File Functions

File Functions

Functions Synopsis

FOCUS.FLL gives a wide range of File functions for you to use.

It is claimed that the applications created with Visual FoxPro are compliant with Windows 95 and Windows NT. That certainly means that, from this point, you'll have to deal with new file concerns.

The way Windows 95 and Windows NT handle files is very much different from what we used to know. Both operating systems largely extended the file capabilities. They can even deal with different file systems simultaneously.

While it was quite usual to talk about the FAT, today we have to consider additional file systems such as NTFS, CDFS, and HPFS in addition to the FAT system.

ADVANCE \d 12There is no doubt that the FAT system, even though less powerful, will still be the most frequently used system; certainly for the users that need a flexible way to boot their system. Please note that the FAT system is the only suitable one for floppies.

HPFS was originally created for the OS/2 platform. Windows NT recognizes the format for "backward compatibility" with OS/2 (backward compatibility from the Microsoft stand point of view).

NTFS is the File System of Windows NT. NTFS uses the international Unicode convention to store the filenames.

CDFS is the File System used for CD-ROMs.

FAT is the old File System we all used. Windows 95 has extended this File System to support the long names convention.

With NTFS, the File System distinguishes between upper and lower case filenames. This was mandatory in order to preserve a certain compatibility with POSIX (Jeffrey Richter, Développer sous Windows 95 et Windows NT, Microsoft Press).

The FOCUS library provides the SYS_volume() function to determine with which file system your program is actually dealing:

&& The second parameter value indicates that the function
&& should return the File System Name
? SYS_volume("C:\",5) && "FAT"
? SYS_volume("E:\",5) && "CDFS"

You can also use the SYS_volume(<szRoot>,2) (obtain volume serial number) service of FOCUS to track down disk changes. Since MS-DOS 4.0, the FORMAT command puts a serial number on each formatted disk.

SYS_volume(<szRoot>,3) (or SYS_MaxFileLength()) can be used to exactly determine the maximum filename length of a given system. You should use this function instead of hardcoding filename lengths in your program:

LOCAL szFile

szFile = SPACE(SYS_MaxFileLength(SYS_curdri() + ":\"))

<rest of your code>

When developing business applications, always keep in mind that the user can now mix these four basic file systems (FAT, NTFS, CDFS and HPFS). In addition, more file systems will probably exist in the future.

Another thing to pay attention to is Unicode, that's the reason why we provide the SYS_IsUnicodeOnDisk() function! Only the NTFS and FAT file systems store filenames under the Unicode form. Should you need paths, and filenames, the system will take in charge all the necessary conversions, but it's up to you to reserve enough space.

We know that you don't have to heed this in your FoxPro application, because everything is transformed for you. But don't forget, that in the event of a very simple C routine, you might get in troubles if you didn't reserve enough space for your temporary buffers!

Starting with version 5.13 of FOCUS.FLL, a brand new set of File functions have appeared: FIL_open(), FIL_create(), FIL_tell(), FIL_seek(), etc. In fact these functions have always existed in FOCUS.FLL but they were kept hidden. What these functions have to offer is really immense when you compare them to low-level native FoxPro file functions. The most obvious advantage is their ability to open a file in a SHARED mode, both for reading and for writing. But they go far beyond that when you use them in conjunction with the FIL_SetOpenStrategy() function. Indeed, by the FIL_SetOpenStrategy() you control how the functions are to operate, either working directly with the Win32 API or mimicking Visual FoxPro. Of course, as you may guess, you better use the Win32 API that provides tighter control over a number of features.

I do not want to take you on a tour of all these features now but just consider what streams can do in the NTFS format. Streams can be incredibly useful in many situations where you need to store many different data of variable length within the same file. How do you specify a stream? By simply specifying a colon after the file name, and then followed by the name of the stream. For example, when issued on a NTFS partition, the following code will create a stream named MyStream in the file MYFILE.TXT:

#define WIN32API_STRATEGY 1
#define GENERIC_READ 0x80000000
#define GENERIC_WRITE 0x40000000

SET LIBRARY TO FOCUS.FLL

FIL_SetOpenStrategy(WIN32API_STRATEGY)
nHandle = FIL_create("C:\MYFILE.TXT:MyStream",GENERIC_READ+GENERIC_WRITE)
FIL_write(nHandle,REPLICATE("Hello",100))
FIL_close(nHandle)

What this code does is simple: it creates a file called MYFILE.TXT and within that file it creates a stream: MyStream. Now, when you attempt to open the file, thanks to an application such as NOTEPAD.EXE, what really seems to be incredible is that the file seems to be empty. Even the length reported by the Explorer is 0! However, you have well written a string of 500 bytes to it (100 * length of "Hello"). I would say that Streams seem to be files within files! Well, Visual FoxPro does not permit to create streams where FOCUS.FLL does.

FIL_AreFileAPIsANSI() : Determines whether a set of Win32 file functions is using the ANSI or OEM character set code page.

Syntax

FIL_AreFileAPIsANSI()  lANSI

Parameters

None.

Returns

lANSI
.T. if the set of Win32 file functions is using the ANSI code page; .F. if the set of Win32 file functions is using the OEM code page.

FIL_BrowseForComputer() : Displays a dialog box that enables the user to select a computer.

Syntax

FIL_BrowseForComputers(), BrowseComputer(), BrowseComputers(), BrowseForComputer(), BrowseForComputers()

Syntax

FIL_BrowseForComputer(szMessage)  szComputer

Parameters

szMessage
message that is displayed above the tree view control in the dialog box. This message can be used to specify instructions to the user.

Returns

szComputer
computer that was chosen or an empty string if no computer was selected.

Example

LOCAL szComputer

szComputer = FIL_BrowseForComputer("Choose a computer for the Post Office")

IF (! EMPTY(szComputer))
 ? "Computer:",szComputer
ENDIF

FIL_BrowseForFolder() : Displays a dialog box that enables the user to select a shell folder.

Syntax

FIL_BrowseForFolders(), BrowseFolder(), BrowseFolders(), BrowseForFolder(), BrowseForFolders()

Syntax

FIL_BrowseForFolder(szMessage)  szFolder

Parameters

szMessage
message that is displayed above the tree view control in the dialog box. This message can be used to specify instructions to the user.

Returns

szFolder
folder that was chosen or an empty string if no folder was selected.

Example

&& Old fashioned code :
LOCAL szDir

szDir = GETDIR()

IF (! EMPTY(szDir))
 ? "Directory:",szDir
ENDIF

&& New fashioned code :
LOCAL szDir

szDir = FIL_BrowseForFolder("Choose a directory for the Post Office")

IF (! EMPTY(szDir))
 ? "Directory:",szDir
ENDIF

FIL_BrowseForPrinter() : Displays a dialog box that enables the user to select a printer.

Syntax

FIL_BrowseForPrinters(), BrowsePrinter(), BrowsePrinters(), BrowseForPrinter(), BrowseForPrinters()

Syntax

FIL_BrowseForPrinter(szMessage)  szPrinter

Parameters

szMessage
message that is displayed above the tree view control in the dialog box. This message can be used to specify instructions to the user.

Returns

szPrinter
printer that was chosen or an empty string if no printer was selected.

Example

LOCAL szPrinter

szPrinter = FIL_BrowseForPrinter("Choose a printer for the Post Office")

IF (! EMPTY(szPrinter))
 ? "Printer:",szPrinter
ENDIF

FIL_Canonicalize() : Canonicalizes a path.

Syntax

FIL_Canonicalize(szPath)  szCanonPath

Parameters

szPath
path to be canonicalized.

Returns

szCanonPath
canonicalized path.

Example

? FIL_canonicalize("..\SPOT2100\BITMAPS\..\BITMAPS") && "\SPOT2100\BITMAPS"

FIL_chdir() : Change Directory service.

Alias

ChDir(), CDir(). CD(), ChangeDirectory(), FIL_cd()
Syntax

FIL_chdir(szPath)  lSuccess

Parameters

szPath
new default path to set.

Returns

lSuccess
.T. if operation was successful, .F. otherwise.

Example

IF (! FIL_chdir("C:\DVL\FOX"))
 ? "Attempt to change directory failed"
ENDIF

FIL_ClearArchived() : Clears the Archive attribute of a file.

Syntax

FIL_ClearArchived(szFile)  lSuccess

Parameters

szFile
file whose attribute has to be changed.

Returns

lSuccess
function successful or not?

FIL_ClearCompressed() : Clears the Compressed attribute of a file.

Syntax

FIL_ClearCompressed(szFile)  lSuccess

Parameters

szFile
file whose attribute has to be changed.

Returns

lSuccess
function successful or not?

FIL_ClearHidden() : Clears the Hidden attribute of a file.

Syntax

FIL_ClearHidden(szFile)  lSuccess

Parameters

szFile
file whose attribute has to be changed.

Returns

lSuccess
function successful or not?

FIL_ClearNormal() : Clears the Normal attribute of a file.

Syntax

FIL_ClearNormal(szFile)  lSuccess

Parameters

szFile
file whose attribute has to be changed.

Returns

lSuccess
function successful or not?

FIL_ClearReadOnly() : Clears the Read-Only attribute of a file.

Syntax

FIL_ClearReadOnly(szFile)  lSuccess

Parameters

szFile
file whose attribute has to be changed.

Returns

lSuccess
function successful or not?

FIL_ClearSystem() : Clears the System attribute of a file.

Syntax

FIL_ClearSystem(szFile)  lSuccess

Parameters

szFile
file whose attribute has to be changed.

Returns

lSuccess
function successful or not?

FIL_ClearTmp() : Clears the Temporary attribute of a file.

Syntax

FIL_ClearTmp(szFile)  lSuccess

Parameters

szFile
file whose attribute has to be changed.

Returns

lSuccess
function successful or not?

FIL_close() : Closes a file.

Remark

FIL_close() depends on the File Opening Strategy which can be set by the FIL_SetOpenStrategy() function of FOCUS.FLL. The Opening Strategy controls how FOCUS.FLL is supposed to access files through low-level file functions, either using the Win32 API or using the FoxPro API. One major disadvantage of the FoxPro API is that files cannot be opened in a SHARE mode. The Opening Strategy is set to 2 by default (1=Win32 API; 2=FoxPro API). If the Opening Strategy, at the time you call FIL_close(), is set to 2, FIL_close() will call the _FClose() FoxPro API function; if it is set to 1 (Win32 API), FIL_close() will call the CloseHandle() Win32 service. A file that has been opened with the Win32 API, cannot be accessed with the FoxPro API in subsequent calls.

Handles that are returned by the FIL_close() function when the Win32 API has been selected cannot be used by low-level functions of FoxPro.

Syntax

FIL_close(nHandle)  lSuccess

Parameters

nHandle
file handle.

Returns

lSuccess
file closed successfully?

FIL_commit() : Flushes a file’s data buffer to disk.

Comment

When data is read from or written to disk, it is transferred through an area of memory known as a file buffer. The file buffer setting can be positioned in the CONFIG.SYS file. Each buffer occupies 512 bytes of memory.

It is important to notice that buffers are a basic switch in speeding up PC operations when it comes to read and write disks because the information can be accessed again later without having to actually read it from disk.

This power comes at a price: when buffering disk writing, the information is not updated at the time the write is performed. It is rather held in memory, up to the moment that the buffer is full, at which occasion it is physically flushed. You can enforce writing thanks to FIL_commit() or FIL_FlushAll()
FIL_commit() is identical to FFLUSH() of Visual FoxPro. The function has been created to allow flushing data from within FOCUS.FLL. Because it was available internally, we have decided to expose this function publicly.

FIL_commit() differs from FIL_FlushAll() in the sense that FIL_FlushAll() operates on streams.

Syntax

FIL_commit(nHandle)  lSuccess

Parameters

nHandle
file handle.

Returns

lSuccess
file flushed successfully? .T. if operation was successful, .F. otherwise.

Example

LOCAL nHandle

nHandle = FCREATE("C:\MYFILE")

IF (nHandle > 0)
 FWRITE(nHandle,"This is a test")
 IF (! FIL_commit(nHandle))
 ? "The file couldn't be flushed"
 ENDIF
 FCLOSE(nHandle)
ENDIF

See also

FIL_FlushAll().

FIL_Common() : Compares two paths to determine if they share a common prefix.

Syntax

FIL_Common(szPath1,szPath2)  szCommon

Parameters

szPath1
path to be compared with szPath2.

szPath2
path to be compared with szPath1.

Returns

szCommon
common prefix.

Example

? FIL_common("C:\SPOT2100","C:\SPOT2100\MEMBERS") && " C:\SPOT2100"

FIL_comp() : Reports if two files are the same.

Special

Under construction.

Alias

FileComp()
Syntax

FIL_comp(szFile1,szFile2)  nDiff

Parameters

szFile1
file szFile1 will be compared to szFile2.

szFile2
file szFile2 will be compared to szFile1.

Returns

nDiff
0 if both files are identical. Otherwise nDiff indicates the first offset at which both files differ.

FIL_CompareTime() : Compares time and date stamps of two files.

Syntax

FIL_CompareTime(szFile1,szFile2,nStructure)  nResult

Parameters

szFile1
first file.

szFile2
second file.

nStructure
which structure should be examined. Time stamp type: 1 = LastWrite, 2 = LastAccess, 3 = Creation

Returns

nResult
can be 0, -1 or 1.

	Value
	Meaning

	-1
	szFile1 is older than szFile2.

	0
	szFile1 is equal to szFile2.

	1
	szFile2 is older than szFile1.

Example

* Comparing one file with itself will obviously result in 0
* (time is identical)
? FIL_CompareTime("BOOKS.H","BOOKS.H",1) && 0

* Comparing a PRG file with its object module
? FIL_CompareTime("BOOKS.PRG","BOOKS.FXP",1) && 1 (FXP older !)

FIL_copy() : Copies a file.

Comment

Both MS-DOS and its upper Windows 16 bits layer were missing a fundamental function allowing to copy one file from one place to another. Many programs or libraries did fill the gap by constructing routines to cover this basic service. They did this by opening the source file source and creating a target file. Then, by filling up a buffer space, they recopied the source file to the target file. Some did pay attention to the file and date stamps, some didn't.

The Win32 environment is now proposing a basic service called CopyFile() (simple enough...). Unfortunately, this basic Win32 service does not provide an empty slot for a callback process so that there is no means to inform the calling application of the file copy progression. The FIL_copy() function of FOCUS gives you the ability to use one or the other method. Should you want to have a very quick copy (even in a kind of asynchronous mode), then we recommend you to pass the FIL_copy() function an additional parameter: .T.. Should you feel that it's much important to inform the user about the progression, then simply omit the fourth parameter of FIL_copy().

Because, there is no way to determine whether you would prefer the target file date and time stamps to be related to the copy or to the file source attributes, the FOCUS library does not use the date and time stamps of the source file. If you want to keep these values, please use the FIL_gdate(), FIL_gtime() before copying and FIL_sdate() and FIL_stime() functions after.

We have created two sample files: one is creating a progress bar of our own; the other uses the standard progress bar of Windows 95. If you want to use the standard progress bar of Windows (which is by far the recommended method), you can also use the additional service FIL_copyTimes() which will determine in advance how many times the callback process is about to be triggered. The value returned by the FIL_copyTimes() function can then be used to set the Max property of the progress bar. The second sample we have provided uses this method.

Alias

FCopy(), CopyFile(), FileCopy()
Syntax

FIL_copy(szFileIn,szFileOut[,szUDF[,lImmediate]])  nSuccess

Parameters

szFileIn
source file to be copied.

szFileOut
destination file.

szUDF
function to activate between each copy of a block. It is necessary to precede the function name with a equal sign ("="). Do not include opening and closing parentheses. The function is passed two parameters : the total number of blocks that must be copied and the current block number. Optional parameter. Please notice that a copy without UDF is much faster than when mentioning a function to execute.

lImmediate
uses Windows to perform the copy (quickest way). Optional parameter.

Returns

nSuccess
was the copy successful or not? 0 indicates a successful copy, -3 indicates that the source file does not exist; -2 indicates that FIL_copy() was unable to open the source file, -1 indicates that it was impossible to create the destination file.

When using the lImmediate parameter, 1 indicates a successful copy.

Example

* Very quick copy (using WIN32 CopyFile())
* Notice how the third parameter is passed with an empty string
? FIL_copy("MYFILE.TXT","YOURFILE.TXT","",.T.)

* Program Name: FIL_copy.prg
* Author: Pat Y. Boens
* Copyright (c) 1995 by The Technology DVL Group
* Created : 9 August 1995 at 22:21
*
*
* Revision number : 3.0 Last Revised : 23 September 1995 at 09:57
*
* Description : File copy synchronized with the a progress bar.
*
* The progress bar is the standard progress bar of
* Windows 95

#define GRAY RGB(128,128,128,128,128,128)
#define LIGHT_GRAY RGB(192,192,192,192,192,192)
#define GRAY_LIGHT RGB(128,128,128,192,192,192)
#define WHITE RGB(255,255,255,255,255,255)
#define BLACK RGB(0,0,0,0,0,0)
#define BACKGROUND RGB(,,,192,192,192)
#define BLACK_ON_WHITE RGB(,,,255,255,255)

#define NIL .NULL.

--

LOCAL oFocus

oFocus = CREATEOBJECT("FLL","FOCUS.FLL")

IF (oFocus.Load())
 =RunCopy()
ENDIF

--

DEFINE CLASS FLL AS custom

 FLLName = ""
 Name = "FLL"

 PROCEDURE Init(cFLL)

 This.FLLName = cFLL

 ENDPROC

 --

 PROCEDURE IsLoaded()

 RETURN (AT(UPPER(This.FLLName),SYS(2001,"LIBRARY")) != 0)

 ENDPROC

 --

 PROCEDURE Load(lAdditive)
 LOCAL cFLL

 IF (PARAMETERS() == 0)
 lAdditive = .F.
 ENDIF

 IF (This.IsLoaded())
 RETU (.T.)
 ENDIF

 WAIT WINDOW "Where is " + This.FLLName + "?" NOWAIT

 cFLL = IIF(FILE(This.FLLName), ;
 This.FLLName , ;
 GETFILE("FLL") ;
)

 IF (EMPTY(cFLL)) && If library not found

 RETU (.F.)

 ELSE

 This.FLLName = cFLL

 IF (lAdditive)

 SET LIBRARY TO (cFLL) ADDITIVE

 ELSE

 SET LIBRARY TO (cFLL)

 ENDIF

 RETU (.T.)

 ENDIF

 ENDPROC

 --

ENDDEFINE

--

FUNCTION RunCopy()

 oForm = CREATEOBJECT("filecopy")
 oForm.Show
 READ EVENTS

RETURN (NIL)

--

DEFINE CLASS filecopy AS form

 Top = 104
 Left = 40
 Height = 98
 Width = 480
 DoCreate = .T.
 BackColor = RGB(192,192,192)
 Caption = "The Technology DVL Group (File copy sample)"
 Icon = "devil.ico"
 Name = "Form1"

 ADD OBJECT ProgressBar AS olecontrol WITH ;
 Top = 40 , ;
 Left = 20 , ;
 Height = 21 , ;
 Width = 441 , ;
 OLETypeAllowed = -2 , ;
 OleClass = "COMCTL.ProgCtrl.1" , ;
 Name = "ProgressBar"

 PROCEDURE Activate()
 LOCAL nTimes

 nTimes = FIL_copyTimes("DRAGDROP.PRG")

 IF (nTimes > 0)

 ThisForm.ProgressBar.Max = nTimes

 IF (FIL_copy("<whatever file> ", ;
 "<your target> ", ;
 "=Progress") == 0)
 WAIT WINDOW "Copy done !"
 ELSE
 WAIT WINDOW "Cannot copy file"
 ENDIF

 ELSE

 WAIT WINDOW "Cannot copy file : " + ALLTRIM(STR(nTimes))

 ENDIF

 ENDPROC

 PROCEDURE Destroy()

 ThisForm.Release
 CLEAR EVENTS

 ENDPROC

 PROCEDURE ProgressBar.NextValue

 IF (ThisForm.ProgressBar.Value < ThisForm.ProgressBar.Max)

 ThisForm.ProgressBar.Value = ThisForm.ProgressBar.Value + 1

 ENDIF

 ENDPROC

ENDDEFINE

--

FUNCTION Progress(Total,n)

 oForm.ProgressBar.NextValue()

RETURN (NIL)

[image: image1.png]The Technology [[ofx]

See also

FIL_copyTimes()
FIL_copyTimes() : Determines how many times the callback function of FIL_copy() will be called.

Syntax

FIL_copyTimes(szFileIn)  nTimes

Parameters

szFileIn
Source file to be copied.

Returns

nTimes
Number of times the callback function of FIL_copy() is about to be called. A positive number indicates that FIL_copy() can be called. In this case the callback process of FIL_copy() will be called nTimes; -3 indicates that the source file does not exist; -2 indicates that FIL_copyTimes() was unable to open the source file.

Example

See FIL_copy().

See also

FIL_copy()
FIL_count() : Returns the number of files and directories that match a particular specification.

Alias

FIL_FilesCount(), FIL_FileCount(), FilesCount(), FileCount()

Syntax

FIL_count(szFileSpec)  nFiles

Parameters

szFileSpec
file specification. Ex. : "C:\MYDIR*.*". The function returns the number of files and directories that match szFileSpec. The entries "." and ".." are disregarded by the function.

Returns

nFiles
Number of files that match the specification.

Example

FUNCTION IsEmptyDir(szDir)
RETURN (FIL_count(szDir + "*.*") == 0)

FIL_create() : Creates a file.

Remark

FIL_create() depends on the File Opening Strategy which can be set by the FIL_SetOpenStrategy() function of FOCUS.FLL. The Opening Strategy controls how FOCUS.FLL is supposed to access files through low-level file functions, either using the Win32 API or using the FoxPro API. One major disadvantage of the FoxPro API is that files cannot be opened in a SHARE mode. The Opening Strategy is set to 2 by default (1=Win32 API; 2=FoxPro API). If the Opening Strategy, at the time you call FIL_create(), is set to 2, FIL_create() will call the _FCreate() FoxPro API function; if it is set to 1 (Win32 API), FIL_create() will call the CreateFile() Win32 service. A file that has been opened with the Win32 API, cannot be accessed with the FoxPro API in subsequent calls.

By placing a colon after the file name followed by a stream, this function makes it possible to access streams.

Alias

CreateFile(), FileCreate()
Syntax

FIL_create(szFile[,nAttributes[,nShareMode[,nFlags]]])  nHandle

Parameters

szFile
file name to be created.

nAttributes
file attributes. The meaning of this attribute is different depending you work with the Win32 API or the FoxPro API.

	Value
	Description

	FoxPro API.

	0
	Read-Write

	1
	Read-Only

	2
	Hidden

	3
	Read-Only/Hidden

	4
	System

	5
	Read-Only/System

	6
	System/Hidden

	7
	Read-Only/Hidden/System

	Win32 API

	0x80000000
	GENERIC_READ

	0x40000000
	GENERIC_WRITE

nShareMode
share mode. This parameter is disregarded when the function is used in conjunction with the FoxPro API.

	Value
	Description

	0x00000001
	FILE_SHARE_READ

	0x00000002
	FILE_SHARE_WRITE

	0x00000004
	FILE_SHARE_DELETE

nFlags
flags and attributes. This parameter is disregarded when the function is used in conjunction with the FoxPro API.

	Value
	Description

	0x00000001
	FILE_ATTRIBUTE_READONLY

	0x00000002
	FILE_ATTRIBUTE_HIDDEN

	0x00000004
	FILE_ATTRIBUTE_SYSTEM

	0x00000010
	FILE_ATTRIBUTE_DIRECTORY

	0x00000020
	FILE_ATTRIBUTE_ARCHIVE

	0x00000080
	FILE_ATTRIBUTE_NORMAL

	0x00000100
	FILE_ATTRIBUTE_TEMPORARY

	0x00000800
	FILE_ATTRIBUTE_COMPRESSED

	0x00001000
	FILE_ATTRIBUTE_OFFLINE

Returns

nHandle
file handle.

Example

#define WIN32_API 1
#define GENERIC_READ 0x80000000
#define GENERIC_WRITE 0x40000000

LOCAL szFile
LOCAL hFile
LOCAL OldStrategy

OldStrategy = FIL_SetOpenStrategy(WIN32_API)

hFile = FIL_create("C:\MyFile.txt:MyStream",GENERIC_WRITE + GENERIC_READ)

IF (hFile != -1)
 FIL_write(hFile,"This string won't appear in the file, but will in the stream")
 FIL_close(hFile)
ENDIF

FIL_SetOpenStrategy(OldStrategy)

FIL_CreateHardLink() : Establishes an NTFS hard link between an existing file and a new file. An NTFS hard link is similar to a POSIX hard link.

Caution

This function does work ONLY in W2K, Win NT, and WinXP.

Remark

You can use the FIL_CreateHardLink() function to create hard links. A hard link is an NTFS-based link to a given file. When you create a hard link to a file on an NTFS volume, NTFS adds a directory entry for the hard link without duplicating the original file. By creating hard links, you can:

· Create hard links that use the same file name as the original file but appear in different folders.

· Create hard links that use different file names from the original file but appear in the same folder.

· Create hard links that use different file names from the original file and appear in different folders.

Because a hard link is a directory entry for a file, an application can modify a file by using any of its hard links. Applications that use any other hard link can detect the changes. However, directory entries for hard links are updated only when a user accesses a file by using the hard link. For example, if a user opens and modifies a file by using its hard link, and the size of the original file changes, the hard link that is used to access the file also shows the new size.

Syntax

FIL_CreateHardLink(szNewFile,szExistingFile)  lSuccess

Parameters

szNewFile
new link to create

szExistingFile
path to the existing file.

Returns

nHandle
file handle.

Example

* This example shows how you can refer to FOCUS.FLL with
* a common "Shared" version: this is the hard link

&& If the shared file does not exist ... create it!
IF (! FILE("D:\MY_SHARE_FOCUS.FLL"))

 && Try to create the link!!!
 IF (FIL_CreateHardLink("D:\MY_SHARE_FOCUS.FLL","D:\MYAPP\FOCUS.FLL"))

 && This would be the common file
 ? FILE("D:\MY_SHARE_FOCUS.FLL") && .T.
 && ... but the original file still exists
 ? FILE("D:\MYAPP\FOCUS.FLL") && .T.

 ENDIF

ENDIF

FIL_crypt() : Encrypts a file.

Remark

The FIL_crypt() function is nice for quick encryption towards an End-User but does not provide a highly secured scheme of encryption as any other user of FOCUS.FLL can decrypt the file thanks to FIL_decrypt()!

Alias

FIL_scramble()
Syntax

FIL_crypt(szFileIn,szFileOut)  lSuccess

Parameters

szFileIn
file to be encrypted.

szFileOut
resulting file.

Returns

lSuccess
file encrypted successfully?

Example

LOCAL nHandle

nHandle = FCREATE("d:\manage2100\images2100\MYFILE.TXT")
FWRITE(nHandle,REPLICATE("Hello, What's your name?",100))
FCLOSE(nHandle)

IF (FIL_crypt("d:\manage2100\images2100\MYFILE.TXT", ;
 "d:\manage2100\images2100\MYFILE.CRYPT"))
 ? "The file was successfully crypted"
ENDIF

See also

FIL_decrypt()
FIL_decrypt() : Decrypts a file encrypted with FIL_crypt().

Alias

FIL_unscramble()
Syntax

FIL_decrypt(szFileIn,szFileOut)  lSuccess

Parameters

szFileIn
file to be decrypted.

szFileOut
resulting file.

Returns

lSuccess
file decrypted successfully?

Example

IF (FIL_decrypt("d:\manage2100\images2100\MYFILE.CRYPT", ;
 "d:\manage2100\images2100\MYFILE.TXT"))
 ? "The file was successfully decrypted"
ENDIF

See also

FIL_crypt()

FIL_del() : Deletes file or directory.

Alias

KillFile(), KillDir(), FIL_Delete(), DeleteFile()

Syntax

FIL_del(szFile)  lSuccess

Parameters

szFile
file or directory to delete.

Returns

lSuccess
file or directory successfully deleted?

Example

IF (! FIL_del("C:\MYFILE.TXT"))
 ? "Attempt to delete file failed"
ENDIF

FIL_DeleteAll() : Deletes all file.

Alias

DeleteAll()

Syntax

FIL_DeleteAll(szFileSpec)  nDeleted

Parameters

szFileSpec
file specification. Ex. : "C:\MYDIR*.MSG". Directories will not be deleted.

Returns

nDeleted
number of files deleted.

Example

IF (! FIL_DeleteAll("C:\MYDIR*.TXT"))
 ? "Cannot delete all files"
ENDIF

FIL_drive() : Returns the drive letter from a complete path.

Syntax

FIL_drive(szPath)  szDrive

Parameters

szPath
path to extract drive qualifier from.

Returns

szDrive
drive qualifier.

Example

? FIL_drive("C:\DVL\FOX\FOCUS.FLL") && "C:"

FIL_exenam() : Returns the executable file name.

Remarks

The behavior of this function might be different given the environment. In the interpreted mode, this function returns a string similar to "C:\VFP\VFP.EXE". Executed from within a real .EXE file that has been produced with VFP, it returns a string similar to "C:\MM.WIN\VFP300.ESL". If you are interested in getting the real .EXE name, consider using SYS(16,0) instead.

Alias

FIL_ExeName(), ExeName()

Syntax

FIL_exenam()  szExeName

Parameters

None.

Returns

szExeName
name of the current executable.

Example

? FIL_exenam()
? SYS_exenam()
? SYS(16,0)

Alternatives

Try SYS(16,0) to get the real .EXE name.

See also

SYS_exenam().

FIL_expand() : Expands a file.

Abstract

An application can decompress a single compressed file by performing the following tasks (in Win32API) :
1. Open the source file by calling the LZOpenFile() function.

2. Open the destination file by calling LZOpenFile().

3. Copy the source file to the destination file by calling the LZCopy() function and passing the handles returned by LZOpenFile().

4. Close the files by calling the LZClose() function.

In FOCUS.FLL, these tasks are all replaced by a single call to FIL_expand().

Syntax

FIL_expand(szFileIn,szFileOut)  lSuccess

Parameters

szFileIn
source file to be expanded.

szFileOut
target file.

Returns

lSuccess
.T. if operation was successful; .F. if not.

Example

IF (! FIL_expand("A:\NC_CORE.EX$","F:\NC_CORE.EXE")
 WAIT WINDOW "Error" NOWAIT
ENDIF

FIL_Explore() : Explores a specified folder.

Remark

FIL_explore() service is more specialized than SYS_ShellExecute(). It uses the same internal but passes it many predefined parameters.

While FIL_explore("Desktop") perfectly works with Windows 95, it does not work as it under Windows NT.

Syntax

FIL_Explore(cFolder)  nError

Parameters

cFolder
folder to explore.

Returns

nError
if the function succeeds, the return value is the instance handle of the application that was run, or the handle of a DDE server application.

If the function fails, the return value is then less than or equal to 32.

Example

? FIL_Explore("Desktop")
? FIL_Explore("C:\")

See also

SYS_WinExec(), SYS_ShellExecute()
FIL_ext() : Returns the three letter extension from a complete path.

Special

This function is now superseded by FIL_split(). We still support it for backward compatibility, but we plan to drop it soon.

Syntax

FIL_ext(szPath)  szFileExt

Parameters

szPath
path to extract file extension from.

Returns

szFileExt
file extension.

Example

? FIL_ext("C:\DVL\FOX\FOCUS.FLL") && "FLL"

FIL_first() : Gets first instance of a filename that matches a given file specification.

Syntax

FIL_first(szFileSpec)  szFile

Parameters

szFileSpec
file specification string.

Returns

szFile
first file that matches szFileSpec. Long filenames are returned by FIL_first() and FIL_next().

Example

szFile = FIL_first("*.PRG")

IF (! EMPTY(szFile))
 DO WHILE (! EMPTY(szFile))
 ? szFile
 szFile = FIL_next()
 ENDDO
ENDIF

FIL_FlushAll() : Flushes all streams; clears all buffers.

Syntax

FIL_FlushAll()  nStreams

Parameters

None.

Returns

nStreams
number of open streams (input and output).

See also

FIL_commit().

FIL_FndExe() : Find executable associated with a given filename.

Alias

FIL_FindExe()

Syntax

FIL_fndexe(szFile,szDir)  szPath

Parameters

szFile
filename. This file MUST exist.

szDir
default directory.

Returns

szPath
path in which the given executable was found.

Example

&& This example will determine what is the program associated to a PRG file
? FIL_FndExe(GETFILE("PRG"),"") && "d:\microsoft visual studio\vfp98\vfp6.exe"

FIL_FullName() : Returns the full path to a specified file.

Special

This function is not the opposite function of FIL_ShortName().

Comment

If the full path name specifies parent directories "C:\SAMPLES\ORGANIZE\..\FCOPY\..\ORGANIZE\CDROM.BMP", by applying the FIL_FullName() function, it will become ... "C:\SAMPLES\ORGANIZE\CDROM.BMP".

Alias

FIL_LongName(), FIL_FullPath()

Syntax

FIL_FullName(szFile)  szFullPath

Parameters

szFile
a file name.

Returns

szFullPath
full pathname.

Example

? FIL_FullName(".\FOCUS.FLL") && "D:\INVOICES\FOCUS.FLL"

FIL_gdate() : Gets file date stamp.

Alias

GetFileDate(), FIL_GetFileDate(), FileDate()

Syntax

FIL_gdate(szFile,[nType])  szDate

Parameters

szFile
file whose date stamp has to be determined.

nType
date stamp type : 1 = LastWrite, 2 = LastAccess, 3 = Creation. This parameter is optional. If not specified FOCUS takes by default the LastWrite structure.

Returns

szDate
file date stamp in the "YYYYMMDD" format. Use the DAT_stod() function to obtain a FoxPro date.

Example

? FIL_gdate("FOCUS.FLL") && "19950728"

See also

FIL_sdate(), FIL_gtime(), FIL_stime()
FIL_get() : Open File Dialog Box.

Comment

FIL_get() is somehow identical to FoxPro GETFILE() function. However it offers different control over the dialog box : Title customization, Initial directory, multiple selection, etc.

Syntax

FIL_get(szFileSpec,szWinTitle,szInitialDir,nFlags)  szFile

Parameters

szFileSpec
pairs of null-terminated filter strings. The first string in each pair describes a filter (for example, "Text Files"), and the second specifies the filter pattern (for example, "*.TXT"). Multiple filters can be specified for a single item by separating the filter pattern strings with a semicolon (for example, "*.TXT;*.DOC;*.BAK"). The last string in the buffer must be terminated by two NULL characters (CHR(0)).

Filter expressions and filter patterns should be separated with NULL characters (CHR(0)).

szWinTitle
window title.

szInitialDir
initial directory.

nFlags
dialog box flags:

#define OFN_READONLY 0x00000001
#define OFN_OVERWRITEPROMPT 0x00000002
#define OFN_HIDEREADONLY 0x00000004
#define OFN_NOCHANGEDIR 0x00000008
#define OFN_SHOWHELP 0x00000010
#define OFN_ENABLEHOOK 0x00000020
#define OFN_ENABLETEMPLATE 0x00000040
#define OFN_ENABLETEMPLATEHANDLE 0x00000080
#define OFN_NOVALIDATE 0x00000100
#define OFN_ALLOWMULTISELECT 0x00000200
#define OFN_EXTENSIONDIFFERENT 0x00000400
#define OFN_PATHMUSTEXIST 0x00000800
#define OFN_FILEMUSTEXIST 0x00001000
#define OFN_CREATEPROMPT 0x00002000
#define OFN_SHAREAWARE 0x00004000
#define OFN_NOREADONLYRETURN 0x00008000
#define OFN_NOTESTFILECREATE 0x00010000
#define OFN_NONETWORKBUTTON 0x00020000
#define OFN_NOLONGNAMES 0x00040000

Flags can be mixed to allow multiple settings.

Following is an extract of the WIN32 API:

	OFN_ALLOWMULTISELECT
	Specifies that the File Name list box allows multiple selections. (If the dialog box is created by using a private template, the definition of the File Name list box must contain the LBS_EXTENDEDSEL value.)

	OFN_CREATEPROMPT
	Specifies that the dialog box function should ask whether the user wants to create a file that does not currently exist. (This flag automatically uses the OFN_PATHMUSTEXIST and OFN_FILEMUSTEXIST flags.)

	OFN_ENABLEHOOK
	Enables the hook function specified in the lpfnHook member.

	OFN_ENABLETEMPLATE
	Causes the operating system to create the dialog box by using the dialog box template identified by hInstance and lpTemplateName.

	OFN_ENABLETEMPLATEHANDLE
	Indicates that hInstance identifies a data block that contains a preloaded dialog box template. The operating system ignores lpTemplateName if this flag is specified.

	OFN_EXTENSIONDIFFERENT
	Specifies that the user typed a filename extension that differs from the extension specified by lpstrDefExt. The function does not use this flag if lpstrDefExt is NULL.

	OFN_FILEMUSTEXIST
	Specifies that the user can type only names of existing files in the File Name entry field. If this flag is specified and the user enters an invalid name, the dialog box procedure displays a warning in a message box. If this flag is specified, the OFN_PATHMUSTEXIST flag is also used.

	OFN_HIDEREADONLY
	Hides the Read Only check box

	OFN_NOCHANGEDIR
	Causes the dialog box to set the current directory back to what it was when the dialog box was called.

	OFN_NONETWORKBUTTON
	Hides and disables the Network button.

	OFN_NOREADONLYRETURN
	Specifies that the returned file does not have the Read Only check box checked and is not in a write-protected directory.

	OFN_NOTESTFILECREATE
	Specifies that the file is not created before the dialog box is closed. This flag should be specified if the application saves the file on a create-nonmodify network sharepoint. When an application specifies this flag, the library does not check for write protection, a full disk, an open drive door, or network protection. Applications using this flag must perform file operations carefully, because a file cannot be reopened once it is closed.

	OFN_NOVALIDATE
	Specifies that the common dialog boxes allow invalid characters in the returned filename. Typically, the calling application uses a hook function that checks the filename by using the FILEOKSTRING message. If the text box in the edit control is empty or contains nothing but spaces, the lists of files and directories are updated. If the text box in the edit control contains anything else, nFileOffset and nFileExtension are set to values generated by parsing the text. No default extension is added to the text, nor is text copied to the buffer specified by lpstrFileTitle.

If the value specified by nFileOffset is less than zero, the filename is invalid. Otherwise, the filename is valid, and nFileExtension and nFileOffset can be used as if the OFN_NOVALIDATE flag had not been specified.

	OFN_OVERWRITEPROMPT
	Causes the Save As dialog box to generate a message box if the selected file already exists. The user must confirm whether to overwrite the file

	OFN_PATHMUSTEXIST
	Specifies that the user can type only valid paths and filenames. If this flag is used and the user types an invalid path and filename in the File Name entry field, the dialog box function displays a warning in a message box.

	OFN_READONLY
	Causes the Read Only check box to be checked initially when the dialog box is created. This flag indicates the state of the Read Only check box when the dialog box is closed.

	OFN_SHAREAWARE
	Specifies that if a call to the OpenFile function fails because of a network sharing violation, the error is ignored and the dialog box returns the given filename. If this flag is not specified, the registered message for SHAREVISTRING is sent to the hook function with a pointer to a null-terminated string for the path and filename in the lParam parameter.

Returns

szFile
file(s) that has (have) been chosen.

Example

* Searching the current directory (normal interface)
? FIL_get("Wave files" + CHR(0) + "*.WAV" + CHR(0) + ;
 "All files" + CHR(0) + "*.*" + CHR(0) + CHR(0), ;
 "FIL_get() interface" , ;
 "." , ;
 0)

[image: image2.png]FIL_get() interface

Lot S =B

TBitmaps, Cllmages
1 Cursor Cani
1Data C0uery
1Doc Ciwaves
Forms

Jlcons

R | pen
N T G| [T

T~ Open as read-only

* Searching the Waves subdirectory allowing multiple selects
? FIL_get("Wave files" + CHR(0) + "*.WAV" + CHR(0) + ;
 "All files" + CHR(0) + "*.*" + CHR(0) + CHR(0), ;
 "FIL_get() interface" , ;
 CURDIR() + "\WAVES" , ;
 512)

[image: image3.png]FIL_get() interface [z[x]

File name: Folders:

[wav binsndz wav dogway | GAMMWIWAVES
T

[

Cancel

el

i 2 mmin Network
binsndwa et
binnd? e S waves
cailon.vay I Beadony
piti E
Lit s of type: Diiyes:

[Wave fies c [Sewm v

* Searching the Waves subdirectory for *.WAV files or *.AVI
* files or *.* allowing multiple selects and get rid of the
* network button
? FIL_get("Wave files" + CHR(0) + "*.WAV" + CHR(0) + ;
 "All files" + CHR(0) + "*.*" + CHR(0) + CHR(0) , ;
 "FIL_get() interface" , ;
 CURDIR() + "\WAVES" , ;
 512 + 131072)

[image: image4.png]FIL_get() interface [z[x]

File name: Folders:

lon wav ding wav dog wav| DATIMHISWAVES

: = =
o

& i

binsnd2 wa vaves

carllon wax (B ey
ity E

Litfies of ype: Diiyes:

[Wave fies c| [Sewnm v

FIL_getatt() : Gets file attribute.

Syntax

FIL_getatt(szFile)  nAttribute

Parameters

szFile
file whose attribute has to be changed.

Returns

nAttribute
file attribute or -1 if error. Attribute values can be mixed.

	Value (HEX)
	Description

	00h
	Normal

	01h
	Read-only

	02h
	Hidden

	04h
	System

	08h
	Volume

	10h
	SubDir

	20h
	Archive

If function returns a value of 3, that means that the file is READ-ONLY (1) and is HIDDEN (2) because 1 + 2 = 3

FIL_GetFolderLocation() : Obtains special folder location.

Comment

Certain folders have special meanings for the shell. An application can use shell functions to retrieve the locations of these special folders and to enable the user to browse for specific folders.

Some special folders are virtual folders—so called because they are not actual directories on any storage device, local or remote. Virtual folders like the desktop folder, the My Computer folder, and the Network Neighborhood folder make a unified namespace possible by serving as containers for any number of storage devices and network resources. Other virtual folders contain file objects, such as printers, that are not part of the file system.

File system directories that the shell uses for specific purposes are also considered special folders. Examples include the Programs folder (which contains the user's program groups) and the desktop directory (which is used to physically store files that have been copied to the desktop folder). The locations of special file system folders are stored in the registry under the HKEY_CURRENT_USER\Software\ Microsoft\Windows\CurrentVersion\Explorer\Shell Folders key.

You can use the SHGetSpecialFolderLocation() function to retrieve the location of a special folder, which can be virtual or part of the file system. The function returns a PIDL, which the application must eventually free using the shell's allocator. If the folder is part of the file system, you can convert the PIDL to a file system path by using the SHGetPathFromIDList() function. The SHGetPathFromIDList() function converts an item identifier list to a file system path :
WINSHELLAPI BOOL WINAPI SHGetPathFromIDList(LPCITEMIDLIST pidl ,
 LPSTR pszPath
);

Parameters
pidl
Pointer to an item identifier list that specifies a file or directory location relative to the root of the name space (the desktop).

PszPath
Pointer to a buffer that receives the file system path. The size of this buffer is assumed to be MAX_PATH bytes.

Return Value
Returns TRUE if successful or FALSE if an error occurs, for example, if the location specified by the pidl parameter is not part of the file system.

To display a dialog box that enables the user to browse for a folder, you can use the SHBrowseForFolder() function. An application might use this function to prompt the user for a directory or remote computer. This function can also be used to browse for network printers, even though printers are not considered folders. An application can specify the root folder to browse from. For example, to prompt the user for a program group, you might call SHBrowseForFolder() specifying the PIDL for the Programs folder as the root.

This function is the one you should use in order to locate the Recycle bin !

Syntax

FIL_GetFolderLocation(nFolderType)  szFullPath

Parameters

nFolderType
folder type.

	MANIFEST CONSTANT
	Value
	Description

	CSIDL_DESKTOP
	0x0000
	Windows desktop – virtual folder at the root of the name space.

	CSIDL_PROGRAMS
	0x0002
	File system directory that contains the user's program groups (which are also file system directories).

	CSIDL_CONTROLS
	0x0003
	Control Panel virtual folder containing icons for the control panel applications.

	CSIDL_PRINTERS
	0x0004
	Printers folder – virtual folder containing installed printers.

	CSIDL_PERSONAL
	0x0005
	File system directory that serves as a common repository for documents

	CSIDL_FAVORITES
	0x0006
	Favorites folder

	CSIDL_STARTUP
	0x0007
	File system directory that corresponds to the user's Startup program group.

	CSIDL_RECENT
	0x0008
	File system directory that contains the user's most recently used documents.

	CSIDL_SENDTO
	0x0009
	File system directory that contains Send To menu items.

	CSIDL_BITBUCKET
	0x000a
	Recycle bin -- file system directory containing file objects in the user's recycle bin. The location of this directory is not in the registry; it is marked with the hidden and system attributes to prevent the user from moving or deleting it.

	CSIDL_STARTMENU
	0x000b
	File system directory containing Start menu items.

	CSIDL_DESKTOPDIRECTORY
	0x0010
	File system directory used to physically store file objects on the desktop (not to be confused with the desktop folder itself)

	CSIDL_DRIVES
	0x0011
	My Computer ¾ virtual folder containing everything on the local computer: storage devices, printers, and Control Panel. The folder may also contain mapped network drives.

	CSIDL_NETWORK
	0x0012
	Network Neighborhood ¾ virtual folder representing the top level of the network hierarchy.

	CSIDL_NETHOOD
	0x0013
	File system directory containing objects that appear in the network neighborhood.

	CSIDL_FONTS
	0x0014
	Virtual folder containing fonts.

	CSIDL_TEMPLATES
	0x0015
	File system directory that serves as a common repository for document templates.

Returns

szFullPath
full pathname.

Example

? FIL_GetFolderLocation(2) && C:\WINDOWS\Start Menu\Programs
? FIL_GetFolderLocation(5) && C:\My Documents

FIL_gets() : Gets a string from a file.

Remark

FIL_gets() depends on the File Opening Strategy which can be set by the FIL_SetOpenStrategy() function of FOCUS.FLL. The Opening Strategy controls how FOCUS.FLL is supposed to access files through low-level file functions, either using the Win32 API or using the FoxPro API. One major disadvantage of the FoxPro API is that files cannot be opened in a SHARE mode. The Opening Strategy is set to 2 by default (1=Win32 API; 2=FoxPro API). If the Opening Strategy, at the time you call FIL_gets(), is set to 2, FIL_gets() will call the _FGets() FoxPro API function; if it is set to 1 (Win32 API), FIL_gets() will call the ReadFile() and SetFilePointer() Win32 services. A file that has been opened with the Win32 API, cannot be accessed with the FoxPro API in subsequent calls.

Syntax

FIL_gets(nHandle,nBytes)  szLine

Parameters

nHandle
file handle.

nBytes
optional number of bytes to read per line. By default, this parameter is set to 254.

Returns

szLine
the line of text as it was read from the file.

FIL_GetTempFileName() : Creates a name for a temporary file.
The GetTempFileName() function creates a name for a temporary file. The filename is the concatenation of specified path and prefix strings, a hexadecimal string formed from a specified integer, and the .TMP extension.

The specified integer can be nonzero, in which case, the function creates the filename but does not create the file. If you specify zero for the integer, the function creates a unique filename and creates the file in the specified directory.

Syntax

FIL_GetTempFileName(szPathName , ;
 szPrefixString, ;
 nUnique)  szTempFileName

Parameters

szPathName
points to a null-terminated string that specifies the directory path for the filename. This string must consist of characters in the ANSI character set. Applications typically specify a period (.) or the path where Windows is supposed to store temporary files.

szPrefixString
points to a null-terminated prefix string. The function uses the first three characters of this string as the prefix of the filename. This string must consist of characters in the ANSI character set.

nUnique
specifies an unsigned integer that the function converts to a hexadecimal string for use in creating the temporary filename.

If nUnique is nonzero, the function appends the hexadecimal string to szPrefixString to form the temporary filename. In this case, the function does not create the specified file, and does not test whether the filename is unique.

If nUnique is zero, the function uses a hexadecimal string derived from the current system time. In this case, the function uses different values until it finds a unique filename, and then it creates the file in the szPathName directory.

The GetTempFileName() function creates a temporary filename of the following form : path\preuuuu.TMP
The following table describes the filename syntax:

	Component
	Meaning

	path
	Path specified by the szPathName parameter

	pre
	First three letters of the cPrefixString string

	uuuu
	Hexadecimal value of nUnique

When Windows shuts down, temporary files whose names have been created by this function are not automatically deleted.

If the nUnique parameter is zero, GetTempFileName() attempts to form a unique number based on the current system time. If a file with the resulting filename exists, the number is increased by one and the test for existence is repeated. Testing continues until a unique filename is found. GetTempFileName() then creates a file by that name and closes it. When nUnique is nonzero, no attempt is made to create and open the file.

Returns

szTempFileName
if the function succeeds, the return value is the name of the temporary file. Otherwise, the function returns an empty string.

Remark

The string that is returned expresses the fullpath specification when tried on Windows 95. It returns a relative pathway when it ran on Windows NT 4.0:

"D:\MEGA32\PAT8390.TMP"
on Win95
".\PAT8390.TMP"

on Win NT

Example

? FIL_GetTempFileName(".","PAT",0) && "D:\MEGA32\PAT8390.TMP"

FIL_GetUniversalName() : Returns the Universal Name of a mapped resource.

Comment

If the full path name specifies parent directories "C:\SAMPLES\ORGANIZE\..\FCOPY\..\ORGANIZE\CDROM.BMP", by applying the FIL_FullName() function, it will become ... "C:\SAMPLES\ORGANIZE\CDROM.BMP".

Alias

FIL_UniversalName(), GetUniversalName(), UniversalName(), NET_GetUniversalName(), NET_GetConnection()

Syntax

FIL_GetUniversalName(szDrive)  szUniversal

Parameters

szDrive
a mapped drive.

Returns

szUniversal
universal resource name.

Example

&& Imagine for example that on the WebServer computer (machine name) there is
&& a SRCServer directory that is shared and accessible via the SRCServer Share Name.
&& Imagine this resource to be mapped to the E:\ drive. Then the FIL_GetUniversalName()
&& function will return the UNC name (hence the name of the function) of this
&& resource.
? FIL_GetUniversalName("E:\") && "\\WebServer\SRCServer"

FIL_gtime() : Gets file time stamp.

Alias

GetFileTime(), FIL_GetFileTime()

Syntax

FIL_gtime(szFile,[nType])  cTime

Parameters

szFile
file whose time stamp has to be determined.

nType
time stamp type: 1 = LastWrite (default), 2 = LastAccess, 3 = Creation. This parameter is optional. If not specified FOCUS takes by default the LastWrite structure.

Returns

cTime
file time stamp.

Example

? FIL_gtime("FOCUS.FLL") && "12:40:52"

See also

FIL_stime(), FIL_gdate(), FIL_sdate()

FIL_hleft() : Number of files that can still be open simultaneously.

Caution

This function does not work for the time being. Under construction.

Syntax

FIL_hleft()  nFiles

Parameters

None.

Returns

nFiles
remaining free handles.

FIL_iatime() : Last access to file,

FIL_ictime() : File creation time,

FIL_imtime() : Last file modification time.

Comment

FIL_ictime(), FIL_imtime() and FIL_iatime() all return the same information because under DOS, the FAT does not keep track of the file creation time, the last modification time and the last access time. However in other environments this is not true. FOCUS for VFP is so fairly well adapted to Windows 95.

Syntax

FIL_i?time()  nTime

Parameters

None.

Returns

nTime
the time is mentioned as Universal Coordinated Time. Make a call to either TIM_gmT() or TIM_localT() to get a string result like "12:03:34"
Example

IF (FIL_info("AUTOEXEC.BAT"))
 ? "Creation time : ",TIM_localT(FIL_ictime())
ENDIF

Caution

You first have to make a call to FIL_info() for this function to work properly.

FIL_ImmediateCopy() : Copies a file.

Syntax

FIL_ImmediateCopy(szSource,szTarget,lFailIfExist)  lSuccess

Parameters

szSource
existing file to be copied to szTarget.

szTarget
filename to copy to.

lFailIfExist
flag for operation if file exists. If this parameter is .T. and the new file already exists, the function fails. If this parameter is .F. and the new file already exists, the function overwrites the existing file and succeeds.

Returns

lSuccess
.T. if copy is successful; .F. if not.

FIL_info() : Obtains general information about a file.

Syntax

FIL_info(szFile)  lSuccess

Parameters

szFile
file for which you want to get information.

Returns

lSuccess
.T. if operation was successful, .F. otherwise.

Upon return, an internal structure of FOCUS is updated. You can query information from this structure with other functions like FIL_isize(), FIL_imtime(), FIL_iatime(), and FIL_ictime().

Example

IF (FIL_info("AUTOEXEC.BAT"))
 ? "Creation time : ",FIL_ictime()
 ? "Last modification time : ",FIL_imtime()
 ? "File size : ",FIL_isize()
ENDIF

FIL_IsArchived() : Is the given file an archived file?

Syntax

FIL_IsArchived(szFile)  lStatus

Parameters

szFile
file name.

Returns

lStatus
.T. if file is archived; .F. otherwise.

FIL_isbof() : Is given file at BOF position?

Syntax

FIL_isbof(nHandle)  lStatus

Parameters

nHandle
file handle.

Returns

lStatus
is the given file at Begin Of File position?

Example

LOCAL nHandle

nHandle = FOPEN("MYFILE.TXT")

? FIL_isbof(nHandle) && .T.
FSEEK(nHandle,0,2) && Move file pointer to end of file
? FIL_isbof(nHandle) && .F.
FCLOSE(nHandle)

FIL_IsCompressed() : Is the given file a compressed file?

Remark

This function determines if the file is compressed by the Operating System, not thanks to a tool such as a ZIP utility.

Syntax

FIL_IsCompressed(szFile)  lStatus

Parameters

szFile
file name.

Returns

lStatus
.T. if file is a compressed file; .F. otherwise.

FIL_IsDirectory() : Tests whether a file is marked with a directory flag.

Syntax

FIL_IsDirectory(szFile)  lIsDir

Parameters

szFile
the directory to check for existence.

Returns

lIsDir
.T. if file is marked with directory flag; .F. otherwise.

FIL_isEOF() : Is given file at EOF position?

Remark

FIL_isEOF() depends on the File Opening Strategy which can be set by the FIL_SetOpenStrategy() function of FOCUS.FLL. The Opening Strategy controls how FOCUS.FLL is supposed to access files through low-level file functions, either using the Win32 API or using the FoxPro API. One major disadvantage of the FoxPro API is that files cannot be opened in a SHARE mode. The Opening Strategy is set to 2 by default (1=Win32 API; 2=FoxPro API). If the Opening Strategy, at the time you call FIL_isEOF(), is set to 2, FIL_isEOF() will call the _FSeek() FoxPro API function; if it is set to 1 (Win32 API), FIL_isEOF() will call the SetFilePointer() Win32 service. A file that has been opened with the Win32 API, cannot be accessed with the FoxPro API in subsequent calls.

Syntax

FIL_iseof(nHandle)  lStatus

Parameters

nHandle
file handle.

Returns

lStatus
is the given file at End Of File position?

Example

LOCAL nHandle

nHandle = FOPEN("MYFILE.TXT") && Let’s imagine that file
 && contains 100 bytes

? FIL_iseof(nHandle) && .F.
FSEEK(nHandle,0,2) && Move file pointer to end of file
? FIL_iseof(nHandle) && .T.
FCLOSE(nHandle)

FIL_IsFile() : Determines if the specified file exists.

Syntax

FIL_IsFile(szFile)  lSuccess

Parameters

szFile
the file whose existence has to be checked.

Returns

lSuccess
.T. if file exists; .F. if not.

FIL_IsHidden() : Is the given file hidden?

Syntax

FIL_IsHidden(szFile)  lStatus

Parameters

szFile
file name.

Returns

lStatus
.T. if file is hidden; .F. otherwise.

FIL_isize() : Gets file size.

Syntax

FIL_isize()  nSize

Parameters

None.

Returns

nSize
file size.

Example

IF (FIL_info("AUTOEXEC.BAT"))
 ? "File size : ",FIL_isize()
ENDIF

Caution

You first have to make a call to FIL_info() for this function to work properly.

FIL_IsNormal() : Is the given file a normal file?

Syntax

FIL_IsNormal(szFile)  lStatus

Parameters

szFile
file name.

Returns

lStatus
.T. if file is normal; .F. otherwise.

FIL_IsReadOnly() : Is the given file read only?

Syntax

FIL_IsReadOnly(szFile)  lStatus

Parameters

szFile
file name.

Returns

lStatus
.T. if file is the read only mode; .F. otherwise.

FIL_IsShared() : Is the given directory shared?

Alias

FIL_IsDirShared()

Syntax

FIL_IsShared(szDir)  lStatus

Parameters

szDir
directory name.

Returns

lStatus
.T. if file is a shared directory; .F. otherwise.

Example

? FIL_IsShared("D:\INVOICES") && .F.
? FIL_IsShared("C:\") && .T.

FIL_IsShortcut() : Is a given file object a shortcut?

Syntax

FIL_IsShortcut(szFile)  lShortcut

Parameters

szFile
file object name.

Returns

lShortcut
.T. if file is a shortcut; .F. otherwise.

Example

? FIL_IsShortcut("C:\Documents and Settings\Pat Boens\Desktop\CDPlayer.lnk") && .T.

FIL_IsSystem() : Is the given file a system file?

Syntax

FIL_IsSystem(szFile)  lStatus

Parameters

szFile
file name.

Returns

lStatus
.T. if file is a system file; .F. otherwise.

FIL_IsTmp() : Is the given file a temporary file?

Syntax

FIL_IsTmp(szFile)  lStatus

Parameters

szFile
file name.

Returns

lStatus
.T. if file is a temporary file; .F. otherwise.

FIL_isUNC() : Determines if the string is a valid UNC (universal naming convention) for a server and share path.

Syntax

FIL_IsUNC(szPath)  lIsUNC

Parameters

szPath
path to consider.

Returns

lIsUNC
.T. if szPath is a valid UNC path; .F. otherwise.

FIL_LastVersion() : Returns the file stamp of FIL functions.

Remark

This function helps the developer identifying the last version of a set of functions. Sometimes the global version information of FOCUS.FLL (MIS_major() and MIS_minor()) does not help tracking down the changes in a project. Starting with version 6.0 of FOCUS.FLL, each source file has now an internal date and time stamp.

Syntax

FIL_LastVersion()  szLastVersion

Parameters

None.

Returns

szLastVersion
string identifying the last version of the functions set. The string is similar to "C:\Focus\5.0\FILES.C-Mon Oct 19 15:55:22 1998".

FIL_len() : Determines the length of an open file.

Remark

FIL_len() depends on the File Opening Strategy which can be set by the FIL_SetOpenStrategy() function of FOCUS.FLL. The Opening Strategy controls how FOCUS.FLL is supposed to access files through low-level file functions, either using the Win32 API or using the FoxPro API. One major disadvantage of the FoxPro API is that files cannot be opened in a SHARE mode. The Opening Strategy is set to 2 by default (1=Win32 API; 2=FoxPro API). If the Opening Strategy, at the time you call FIL_len(), is set to 2, FIL_len() will call the _FSeek() FoxPro API function; if it is set to 1 (Win32 API), FIL_len() will call the SetFilePointer() Win32 service. A file that has been opened with the Win32 API, cannot be accessed with the FoxPro API in subsequent calls.

Handles that are returned by the FIL_open() function when the Win32 API has been selected cannot be used by low-level functions of FoxPro such as FWRITE(), FCLOSE() and the likes.

FIL_len() and FIL_size() are identical from the functionality point of view although they're using very different methods to determine a file's size. The first one operates on a handle, while the second one operates with a filename.

Syntax

FIL_len(nHandle)  nSize

Parameters

nHandle
file handle.

Returns

nSize
size of file in bytes.

Example

LOCAL nHandle
LOCAL OldStrategy

OldStrategy = FIL_SetOpenStrategy(2)
nHandle = FOPEN("C:\TEST.PRG")

? FIL_len(nHandle)

FCLOSE(nHandle)
FIL_SetOpenStrategy(OldStrategy)

See also

FIL_size().

FIL_LenCompressed() : Obtains the compressed size, in bytes, of a specified file.
Remark

The FIL_LenCompressed() function obtains the actual number of bytes of disk storage used to store a specified file. If the file is located on a volume that supports compression, and the file is compressed, the value obtained is the compressed size of the specified file. If the file is not located on a volume that supports compression, or if the file is not compressed, the value obtained is the actual file size.

Syntax

FIL_LenCompressed(szFile)  nLength

Parameters

szFile
file name to determine the length of.

Returns

nLength
length of the file.

Example

IF (! FIL_SetCompression("MYFILE.TXT",.T.))
 WAIT WINDOW "Cannot compress file"
ELSE
 && Displays the length of the file (compressed size)
 ? FIL_LenCompressed("MYFILE.TXT")
ENDIF

See also

FIL_IsCompressed(), FIL_SetCompression(), FIL_len()

FIL_mkdir() : Creates a directory

Syntax

FIL_mkdir(szDir)  lSuccess

Parameters

szDir
directory to create.

Returns

lSuccess
.T. if operation was successful, .F. otherwise.

Example

IF (! FIL_mkdir("Hello World"))
 ? "Directory creation failed."
ENDIF

FIL_name() : Returns the file name from a complete path.

Syntax

FIL_name(szPath)  szFile

Parameters

szPath
path to extract file name from.

Returns

szFile
file name.

Example

? FIL_name("C:\DVL\FOX\FOCUS.FLL") && "FOCUS"

FIL_next() : Gets next instance of a filename that matches a given file specification (see FIL_first()).

Syntax

FIL_next()  szFile

Parameters

None.

Returns

szFile
next instance. Long filenames are returned by FIL_first() and FIL_next().

Example

szFile = FIL_first("*.PRG")

IF (! EMPTY(szFile))
 DO WHILE (! EMPTY(szFile))
 ? szFile
 szFile = FIL_next()
 ENDDO
ENDIF

FIL_now() : Returns a file name in the YYYYMMDDHHmmSSXXXXXXXXXX format.

Remark

FIL_now() makes it possible to determine a filename that corresponds to the NOW moment. YYYY stands for the year, MM for the month, DD for the day, HH for the hour, mm for the minutes, SS for the seconds, and XXXXXXXXXX for the tick count (the tick count is left padded with "0").

FIL_now() makes it very easy to get a filename that is most likely to be unique (although strictly speaking a file with the same name might already be existing) and that can be used to store sequential information. For example, each time that a log file is internally compressed by the LOG_*() functions of FOCUS, the resulting file is named by a call to FIL_now().

FIL_now() does not create any file but the FIL_CreateNow() does!

Alias

FIL_CreateNow(), TIM_now(), DAT_now(), STR_now(), Now()
Syntax

FIL_now()  szFile
FIL_CreateNow(szDir)  szFile

Parameters

szDir
FIL_now() takes no parameter but its alias FIL_CreateNow() does. szDir indicates the directory where the NOW file has to be created. In the case of the FIL_CreateNow() function/alias, the file is also created under the szDir directory. It should be noted that the FIL_CreateNow() always adds a backslash at the end of szDir before concatenating it with szFile.

Returns

szFile
resulting filename. The FIL_CreateNow() function gets the full path spec or an empty string if the file couldn't be created. If the file was already existing, it is overwritten.

Example

? FIL_now() && "199810291721330030346194"
? FIL_CreateNow("C:"

FIL_open() : Opens a file in a given mode.

Remark

FIL_open() depends on the File Opening Strategy which can be set by the FIL_SetOpenStrategy() function of FOCUS.FLL. The Opening Strategy controls how FOCUS.FLL is supposed to access files through low-level file functions, either using the Win32 API or using the FoxPro API. One major disadvantage of the FoxPro API is that files cannot be opened in a SHARE mode. The Opening Strategy is set to 2 by default (1=Win32 API; 2=FoxPro API). If the Opening Strategy, at the time you call FIL_open(), is set to 2, FIL_open() will call the _FOpen() FoxPro API function; if it is set to 1 (Win32 API), FIL_open() will call the CreateFile() Win32 service. A file that has been opened with the Win32 API, cannot be accessed with the FoxPro API in subsequent calls.

Handles that are returned by the FIL_open() function when the Win32 API has been selected cannot be used by low-level functions of FoxPro.

By placing a colon after the file name followed by a stream, this function makes it possible to access streams.

Alias

OpenFile(), FileOpen()
Syntax

FIL_open(szFile,nFlag,nShareMode)  nHandle

Parameters

szFile
file name to be opened.

nFlag
the meaning of this parameter is different based on the API that's about to be used.

	Value
	Description

	FoxPro API.

	0
	Read Only

	1
	Write Only

	2
	Read Write

	Win32 API

	0x80000000
	GENERIC_READ

	0x40000000
	GENERIC_WRITE

nShareMode
this parameter is disregarded when used in conjunction with the FoxPro API.

	Value
	Description

	0x00000001
	FILE_SHARE_READ

	0x00000002
	FILE_SHARE_WRITE

Returns

nHandle
file handle.

FIL_OpenFile() : Attempts to open a file in SHARED mode. The file is closed upon exit of the function.
Remark

The FIL_OpenFile() function can be used to try to open a given file in SHARED mode. If it can, it closes the file and returns a .T. value; if it cannot, it simply returns a .F. value.

With this function you can actually test if there is a reasonable chance to open a file in SHARED mode. If there is, you can then try to open it with USE <dbf>. Of course, nothing is preventing other programs from opening the file in EXCLUSIVE mode between the moment you issue the FIL_OpenFile() function and the moment you will execute the USE <dbf> command. That's the reason why we speak about a reasonable chance.

Syntax

FIL_OpenFile(szFile)  lSuccess

Parameters

szFile
file to open in SHARED mode (SHARED read, and SHARED write).

Returns

lSuccess
.T. if we successfully opened the file; .F. if not.

Example

IF (FIL_OpenFile("C:\DATA\MY.DBF"))
 USE "C:\DATA\MY.DBF" SHARED
ELSE
 ? "Cannot open C:\DATA\MY.DBF"
ENDIF

FIL_owner() : Finds the owner of a given file.

Special

This function will only work under Windows NT. Under construction.

Syntax

FIL_Owner(szFile)  szOwner

Parameters

szFile
file to consider.

Returns

szOwner
owner of the file.

FIL_path() : Returns the pathname from a complete path.

Syntax

FIL_path(szPath)  szPath

Parameters

szPath
the full path to extract the pathname from.

Returns

szPath
path.

Example

? FIL_path("C:\DVL\FOX\FOCUS.FLL") && "C:\DVL\FOX"

FIL_puts() : Writes a string plus a carriage return line feed pair to a file.

Remark

FIL_puts() depends on the File Opening Strategy which can be set by the FIL_SetOpenStrategy() function of FOCUS.FLL. The Opening Strategy controls how FOCUS.FLL is supposed to access files through low-level file functions, either using the Win32 API or using the FoxPro API. One major disadvantage of the FoxPro API is that files cannot be opened in a SHARE mode. The Opening Strategy is set to 2 by default (1=Win32 API; 2=FoxPro API). If the Opening Strategy, at the time you call FIL_puts(), is set to 2, FIL_puts() will call the _FPuts() FoxPro API function; if it is set to 1 (Win32 API), FIL_puts() will call the WriteFile() Win32 service. A file that has been opened with the Win32 API, cannot be accessed with the FoxPro API in subsequent calls.

Syntax

FIL_puts(nHandle,szString)  nBytes

Parameters

nHandle
file handle.

szString
string to write to the file.

Returns

nBytes
number of bytes written to the file.

FIL_read() : Returns a specified number of bytes.

Remark

FIL_read() depends on the File Opening Strategy which can be set by the FIL_SetOpenStrategy() function of FOCUS.FLL. The Opening Strategy controls how FOCUS.FLL is supposed to access files through low-level file functions, either using the Win32 API or using the FoxPro API. One major disadvantage of the FoxPro API is that files cannot be opened in a SHARE mode. The Opening Strategy is set to 2 by default (1=Win32 API; 2=FoxPro API). If the Opening Strategy, at the time you call FIL_read(), is set to 2, FIL_read() will call the _FRead() FoxPro API function; if it is set to 1 (Win32 API), FIL_read() will call the ReadFile() Win32 service. A file that has been opened with the Win32 API, cannot be accessed with the FoxPro API in subsequent calls.

Syntax

FIL_read(nHandle,nBytes)  szData

Parameters

nHandle
file handle.

nBytes
number of bytes to read.

Returns

szData
the data as it was read from the file. If the file couldn't be read, the function returns an empty string.

FIL_ReadAllSections() : Reads all the sections of any INI file.

Alias

GetPrivateProfileSections(),GetPrivateProfileSectionNames()
Syntax

FIL_ReadAllSections(szIniFile)  szSections

Parameters

szIniFile
.INI file name.

Returns

szSections
all sections of the .INI file. Sections are separated by each other with a semicolon (";").

See also

FIL_sectio()

FIL_ReadSub() : Reads a number of bytes from as specific location in a file.

Remark

FIL_ReadSub() depends on the File Opening Strategy which can be set by the FIL_SetOpenStrategy() function of FOCUS.FLL. The Opening Strategy controls how FOCUS.FLL is supposed to access files through low-level file functions, either using the Win32 API or using the FoxPro API. One major disadvantage of the FoxPro API is that files cannot be opened in a SHARE mode. The Opening Strategy is set to 2 by default (1=Win32 API; 2=FoxPro API). If the Opening Strategy, at the time you call FIL_ReadSub(), is set to 2, FIL_ReadSub() will call the _FRead() FoxPro API function; if it is set to 1 (Win32 API), FIL_ReadSub() will call the ReadFile() Win32 service. A file that has been opened with the Win32 API, cannot be accessed with the FoxPro API in subsequent calls before the file is closed.

Syntax

FIL_ReadSub(nHandle,nStart,nBytes)  szData

Parameters

nHandle
file handle.

nStart
starting position to read from. The first position in the file is 1.

nBytes
number of bytes to read.

Returns

szData
the data as it was read from the file. If the file couldn't be read, the function returns an empty string.

FIL_ReadWININIAllSections() : Reads all the sections of the WIN.INI file.

Syntax

FIL_ReadWININIAllSections()  szSections

Parameters

None.

Returns

szSections
a buffer with all sections separated with a ";".

FIL_reaini() : Reads a character string from an .INI file.

Alias

FIL_ReadIni(), GetPrivateProfileString()
Syntax

FIL_reaini(szSection,szEntry,szIniFile)  szValue

Parameters

szSection
section of .INI file.

szEntry
key name that appears under the section name.

szIniFile
.INI file name.

Returns

szValue
string pertaining to entry.

Example

IF (FIL_reaini("SECRET","PassWord","MY.INI") != szPassWord)
 ? "Wrong password !"
ENDIF

FIL_rename() : Renames a given file.

Comment

On a Case Sensitive File System, you'll have to make sure that case is exactly preserved. Under Windows 95 (by default, the system preserves case sensitivity (SYS_IsFileCasePreserved()) but does not pay attention to cases (SYS_IsFileCaseSensitive())), renaming a file is no innocent operation.

Syntax

FIL_rename(szSource,szTarget)  lSuccess

Parameters

szSource
file name to rename.

szTarget
new file name.

Returns

lSuccess
operation successful or not?

Example

&& Under Windows 95 this code will change the case
&& of the file. If the exact filename was "Test.c", it will
&& now be changed to "TEST.C"

IF (FIL_rename("C:\TEST.C","C:\TEST.C"))
 ? "File renamed successfully"
ELSE
 ? "Operation failed"
ENDIF

&& Other example
? FIL_rename("D:\CSERVE\DOWNLOAD\FORUMS\ALL MICROSOFT FORUMS ON COMPUSERVE",;
 "D:\CSERVE\DOWNLOAD\FORUMS\All Microsoft forums on CompuServe")

FIL_rendir() : Renames a given file or directory.

Syntax

FIL_rendir(szSource,szTarget)  lSuccess

Parameters

szSource
file name or directory name to be renamed.

szTarget
new file name or new directory name.

Returns

lSuccess
operation successful or not?

Example

IF (FILE(szToBeSaved))
 ? "This file already exists. Do you want to rename it?"
 m.lAnswer = MIS_yesno()
 IF (m.lAnswer)
 ACCEPT "Enter new file name" TO szNewName
 IF (! FIL_rendir(szToBeSaved,szNewname))
 ? "Attempt to rename file failed !"
 ENDIF
 ENDIF
ENDIF

See also

FIL_del(), FIL_rename(), FIL_rmdir().

FIL_rmdir() : Removes a directory.

Syntax

FIL_rmdir(szPath)  lSuccess

Parameters

szPath
directory to be removed.

Returns

lSuccess
operation successful or not?

Example

IF (! FIL_rmdir("C:\DVL"))
 ? "Cannot remove directory. Check if empty."
ENDIF

See also

FIL_del(), FIL_rename(), FIL_rendir().

FIL_save() : Save File Dialog Box.

Syntax

FIL_save(szFile,szTitle,szDir,nFlags)  szFile

Parameters

szFile
pairs of null-terminated filter strings. The first string in each pair describes a filter (for example, "Text Files"), and the second specifies the filter pattern (for example, "*.TXT"). Multiple filters can be specified for a single item by separating the filter pattern strings with a semicolon (for example, "*.TXT;*.DOC;*.BAK"). The last string in the buffer must be terminated by two NULL characters (CHR(0)).

Filter expressions and filter patterns should be separated with NULL characters (CHR(0)).

szTitle
window title.

szDir
initial directory.

nFlags
dialog box flags. Please refer to the values described for the FIL_get() function.

Returns

szFile
file that has been chosen.

Example

* Saving a file
? FIL_save("Wave files" + CHR(0) + "*.WAV" + CHR(0) + ;
 "All files" + CHR(0) + "*.*" + CHR(0) + CHR(0), ;
 "Mention your file" , ;
 "." , ;
 0)

[image: image5.png][Mention your fi

Save n: | 3 Spoi2100 ~

20011203
backip20020102
Bitmaps

Cashier

chat

Data

mport
Documentation Install
Epson INVENTORIES
Export License.

mEn R ool

iy Eompater -
L] g =

Saveastpe [wavelies =

My Network P

FIL_sdate() : Sets file date stamp.

Alias

SetFileDate(), FIL_SetFileDate()

Syntax

FIL_sdate(szFile,szDate,[nType])  lSuccess

Parameters

szFile
file whose date stamp has to be set.

szDate
date stamp string in the "YYYYMMDD" format.

nType
date stamp type: 1 = LastWrite, 2 = LastAccess, 3 = Creation. This parameter is optional. If not specified FOCUS takes by default the LastWrite structure.

Returns

lSuccess
.T. if operation was successful, .F. otherwise.

Example

? FIL_sdate("MYFILE.TXT",DTOS(DATE()),1) && .T.

See also

FIL_gdate(), FIL_gtime(), FIL_stime()

FIL_sectio() : Reads .INI section.

Syntax

FIL_sectio(szSection,szINIFile)  szEntries

Parameters

szSection
section to read.

szINIFile
.INI file to read from.

Returns

szEntries
all entries for given section. Up to 1024 bytes. Each entry is separated by a ";".

Example

? "Wallpaper settings",FIL_sectio("wallpaper","myapp.ini")

See also

FIL_ReadAllSections()

FIL_seek() : Moves the file pointer to a new position.

Remark

FIL_seek() depends on the File Opening Strategy which can be set by the FIL_SetOpenStrategy() function of FOCUS.FLL. The Opening Strategy controls how FOCUS.FLL is supposed to access files through low-level file functions, either using the Win32 API or using the FoxPro API. One major disadvantage of the FoxPro API is that files cannot be opened in a SHARE mode. The Opening Strategy is set to 2 by default (1=Win32 API; 2=FoxPro API). If the Opening Strategy, at the time you call FIL_seek(), is set to 2, FIL_seek() will call the _Fseek() FoxPro API function; if it is set to 1 (Win32 API), FIL_seek() will call the SetFilePointer() Win32 service. A file that has been opened with the Win32 API, cannot be accessed with the FoxPro API in subsequent calls.

Syntax

FIL_seek(nHandle,nOffset,nStrategy)  nPosition

Parameters

nHandle
file handle as returned by the FIL_open() function..

nOffset
new position in file.

nStrategy
relative position.

	Value
	Description

	0
	The pointer is moved relative to the beginning of the file

	1
	The pointer is moved relative to the current position in the file.

	2
	The pointer is moved relative to the end of the file

Returns

nPosition
number of bytes the file pointer is positioned from the beginning of the file.

See also

FIL_IsEOF(), FIL_IsBOF(), FIL_SetOpenStrategy()
FIL_SetArchived() : Sets the Archive attribute of a file.

Syntax

FIL_SetArchived(szFile)  lSuccess

Parameters

szFile
file whose attribute has to be changed.

Returns

lSuccess
function successful or not?

FIL_setatt() : Sets file attribute.

Syntax

FIL_setatt(szFile,nAttribute)  lSuccess

Parameters

szFile
file whose attribute has to be changed.

nAttribute
new attribute of file.

	Value (HEX)
	Description

	00h
	Normal

	01h
	Read-only

	02h
	Hidden

	04h
	System

	08h
	Volume

	10h
	SubDir

	20h
	Archive

Attribute values can be mixed.

Returns

lSuccess
function successful or not?

Example

Here is an example for hiding a file
FIL_setatt("MYFILE.CFG",2)

* Here is an example for making a file READ-ONLY
FIL_setatt("MYFILE.CFG",1)

* Here is an example for making a file HIDDEN and READ-ONLY
FIL_setatt("MYFILE.CFG",3)

FIL_SetCompressed() : Sets the Compressed attribute of a file.

Syntax

FIL_SetCompressed(szFile)  lSuccess

Parameters

szFile
file whose attribute has to be changed.

Returns

lSuccess
function successful or not?

FIL_sethan() : Allocates file handles to the current process.

Alias

FIL_SetHandleCount()

Comment

The FIL_sethan() function is not necessary under the Windows NT implementation of Win32.

The FIL_sethan() function may be necessary under other implementations of Win32, such as Win32s, in order to increase the default number of available file handles. Under Win32s, this default is 20.

Internal Call

SetHandleCount()

Syntax

FIL_sethan(nHandles)  nHandlesSet

Parameters

nHandles
specifies the number of file handles needed by the application. The maximum value is implementation-dependent. Under Win32s, the maximum value is 255.

Returns

nHandlesSet
under Win32s, the return value specifies the number of file handles actually available to the application. It may be fewer than the number specified by the nHandles parameter.

Example

IF (FIL_sethan(65) < 65)
 ? "You must free file handles to run this application."
ENDIF

FIL_SetHidden() : Sets the Hidden attribute of a file.

Syntax

FIL_SetHidden(szFile)  lSuccess

Parameters

szFile
file whose attribute has to be changed.

Returns

lSuccess
function successful or not?

FIL_SetNormal() : Sets the Normal attribute of a file.

Syntax

FIL_SetNormal(szFile)  lSuccess

Parameters

szFile
file whose attribute has to be changed.

Returns

lSuccess
function successful or not?

FIL_SetCompression() : Compresses a file.

Remark

This function can be used on files and directories. The volume must support compression, like in Windows NT.

Syntax

FIL_SetCompression(szFile,lCompression)  lSuccess

Parameters

szFile
file name.

lCompression
.T. to compress file; .F. to decompress file.

Returns

lSuccess
operation was successful or not.

Example

IF (! FIL_SetCompression("MYFILE.TXT",.T.))
 WAIT WINDOW "Cannot compress file"
ELSE
 && Displays the length of the file (compressed size)
 ? FIL_LenCompressed("MYFILE.TXT")
ENDIF

See also

FIL_IsCompressed(), FIL_LenCompressed(), FIL_len()

FIL_SetOpenStrategy() : Determines how the low-level functions of FOCUS will access files.

Alias

FIL_GetOpenStrategy()

Syntax

FIL_SetOpenStrategy([nStrategy])  nCurrentStrategy

Parameters

nStrategy
strategy to use (1=Win32 API; 2=FoxPro API). This parameter is optional. When it is not passed, the function simply returns the current status. When you use the FIL_GetOpenStrategy(), this parameter may not be passed along.

Returns

nCurrentStrategy
current strategy as it was set prior to enter in the function.

Example

LOCAL nHandle
LOCAL nStrategy

**
* The following example opens a file thanks to the Win32 API, and
* reads each line of text and displays it.
**

#define STRA_WIN32API 1
#define STRA_FOXPROAPI 2

#define GENERIC_READ 0x80000000
#define GENERIC_WRITE 0x40000000
#define FILE_SHARE_READ 0x00000001
#define FILE_SHARE_WRITE 0x00000002

#define INVALID_HANDLE -1

nStrategy = FIL_SetOpenStrategy(STRA_WIN32API)

nHandle = FIL_open("MYFILE.TXT" , ;
 GENERIC_READ + GENERIC_WRITE, ;
 FILE_SHARE_READ + FILE_SHARE_WRITE)

IF (nHandle != INVALID_HANDLE)
 DO WHILE (! FIL_iseof(nHandle))
 ? FIL_gets(nHandle)
 ENDDO
 FIL_close(nHandle)
ENDIF

&& Restore the Strategy to what it was prior entering this function
FIL_SetOpenStrategy(nStrategy)

FIL_SetReadOnly() : Sets the Read-Only attribute of a file.

Syntax

FIL_SetReadOnly(szFile)  lSuccess

Parameters

szFile
file whose attribute has to be changed.

Returns

lSuccess
function successful or not?

FIL_SetSystem() : Sets the System attribute of a file.

Syntax

FIL_SetSystem(szFile)  lSuccess

Parameters

szFile
file whose attribute has to be changed.

Returns

lSuccess
function successful or not?

FIL_SetTmp() : Sets the Temporary attribute of a file.

Syntax

FIL_SetTmp(szFile)  lSuccess

Parameters

szFile
file whose attribute has to be changed.

Returns

lSuccess
function successful or not?

FIL_ShortName() : Obtains the short name equivalent of a filename.

Syntax

FIL_ShortName(szFile)  cShortName

Parameters

szFile
long filename to be transformed.

Returns

cShortName
short form of <szFile>.

Example

&& We emphasized in bold the long pathname part
szPath = "D:\CSERVE\DOWNLOAD\MICROSOFT FORUMS\FORUMS.TXT"

szShortName = FIL_ShortName(szPath)
&& Returns something like :
&& "D:\CSERVE\DOWNLOAD\MICROS~1\FORUMS.TXT"

FIL_size() : Determines the length of a file.

Remark

FIL_len() depends on the File Opening Strategy which can be set by the FIL_SetOpenStrategy() function of FOCUS.FLL. This is not the case of the FIL_size() function that operates through the use of a filename instead of a handle. Starting with version 6.0 of FOCUS.FLL the FIL_size() function can even operate on files that are already opened. That wasn't the case before.

Syntax

FIL_size(szFile)  nSize

Parameters

szFile
file name.

Returns

nSize
size of file in bytes.

See also

FIL_len().

FIL_slices() : Cuts a file into several slices of a given size.

Syntax

FIL_slices(szFile,nSize)  nSlices

Parameters

szFile
file to cut into smaller slices.

nSize
size of each slice.

Returns

nSlices
number of slices used (= FileSize / nSliceSize + 1). The output files are named OUTPUT.1, OUPUT.2, ... up to OUTPUT.<nSlices>. These OUPUT files are created in the current directory. The function is very useful when you need to cut a file to be duplicated on several floppy disks.

Example

&& This example is supposed to divide the BIGFILE.ZIP file
&& into different smaller files, each of 200000 bytes, except
&& the last one that may be smaller (rest of the file)
&& Then, it displays whether the supposed OUTPUT files
&& exist or not

nSlices = FIL_slices("BIGFILE.ZIP",200000)

FOR i = 1 TO nSlices
 ? FILE("OUTPUT." + ALLTRIM(STR(i)))
NEXT

FIL_split() : Splits full filename into their basic components.

Alias

SplitPath()

Syntax

FIL_split(szFile,nComponent)  szComponent

Parameters

szFile
filename to split.

nComponent
component number to return.

	Value
	Description

	1
	Drive

	2
	Directory

	3
	Filename without the extension

	4
	Extension including the dot separator

Returns

szComponent
appropriate file component.

Example

? FIL_split("C:\DVL\FOCUS.FLL",1) && "C:"
? FIL_split("C:\DVL\FOCUS.FLL",2) && "\DVL\"
? FIL_split("C:\DVL\FOCUS.FLL",3) && "FOCUS"
? FIL_split("C:\DVL\FOCUS.FLL",4) && ".FLL"

FIL_stime() : Sets file time stamp.

Alias

SetFileTime(), FIL_SetFileTime()

Syntax

FIL_stime(szFile,szTime,[nType])  lSuccess

Parameters

szFile
file whose time stamp has to be set.

szTime
time stamp string in the "HH:MM:SS" format.

nType
time stamp type: 1 = LastWrite, 2 = LastAccess, 3 = Creation. This parameter is optional. If not specified FOCUS.FLL takes by default the LastWrite structure.

Returns

lSuccess
.T. if operation was successful, .F. otherwise.

Example

? FIL_stime("MYFILE.TXT","03:00:00",1) && .T.

See also

FIL_sdate(), FIL_gdate(), FIL_gtime()

FIL_StringToFile() : Writes a string to a file.

Syntax

FIL_StringToFile(szFile,szString)  lSuccess

Parameters

szFile
file in which will be written (the file is ALWAYS created).

szString
string to write to szFile.

Returns

lSuccess
.T. if operation was successful, .F. otherwise.

Example

&& Example #1

? FIL_StringToFile("C:\MYFILE.TXT","This is the text")
&& Example #2

LOCAL szWeb

LOCAL szNum

LOCAL szExt

&& This example will extract an image from FastWrite's web site. The image is

&& returned as a string. Then, the string is saved to a file thanks to

&& FIL_StringToFile() and finally, the background picture of VFP is set to the

&& newly created image file

szWeb = "http://www.fastwrite.com/products/focus/Banners/Banner"

szNum = "001"

szExt = ".jpg"

szPath = "O:\SPOT2000"

_screen.picture = IIF(FIL_StringToFile(szPath + szNum + szExt , ;
 HTTP_GetURL(szWeb + szNum + szExt) ;
) , ;
 szPath + szNum + szExt,"")

FIL_tell() : Determines the current location of a file pointer.

Remark

FIL_tell() depends on the File Opening Strategy which can be set by the FIL_SetOpenStrategy() function of FOCUS.FLL. The Opening Strategy controls how FOCUS.FLL is supposed to access files through low-level file functions, either using the Win32 API or using the FoxPro API. One major disadvantage of the FoxPro API is that files cannot be opened in a SHARE mode. The Opening Strategy is set to 2 by default (1=Win32 API; 2=FoxPro API). If the Opening Strategy, at the time you call FIL_tell(), is set to 2, FIL_tell() will call the _FSeek() FoxPro API function; if it is set to 1 (Win32 API), FIL_tell() will call the SetFilePointer() Win32 service. A file that has been opened with the Win32 API, cannot be accessed with the FoxPro API in subsequent calls.

Syntax

FIL_tell(nHandle)  nCurrentPos

Parameters

nHandle
file handle.

Returns

nCurrentPos
current position of file pointer.

Example

LOCAL nCurrent
LOCAL nEnd
LOCAL nHandle

<...>
nCurrent = FIL_tell(nHandle) && Save current file pointer
 && position
nEnd = FIL_seek(nHandle,0,2) && set file pointer at EOF

FIL_seek(nHandle,nCurrent,0) && Reset file pointer to its
 && original position
? "File size :",nEnd && File size !!!

FIL_tree() : Returns a tree of directories.

Syntax

FIL_Tree(szDisk,nBufferLength)  cTree

Parameters

szDisk
disk whose directory tree is to be returned.

nBufferLength
indicates which space should be reserved to store the resulting string.

Requesting a disk tree is a time consuming process. This function may need dozens of seconds to complete. Also the returning string may be huge. Therefore, it's the programmer's responsibility to mention the memory he's keen to reserve for the operation.

Returns

cTree
a string in the form of: "J:\RECYCLED;J:\FAILSAFE.DRV;J:\FAILSAFE.DRV\FAILSAFE;J:\FAILSAFE.DRV\COMMAND;J:\FAILSAFE.DRV\WINDOWS;J:\FAILSAFE.DRV\DRV;"
Example

? FIL_Tree("J:",5000)

FIL_type() : Returns the type of the specified file.

Alias

FileType(), FIL_FileType()
Syntax

FIL_type(szFile)  nType

Parameters

szFile
file name.

Returns

nType
file type

	Value
	Description

	0
	The type of the specified file is unknown

	1
	The specified file is a disk file

	2
	The specified file is a character file, typically an LPT device or a console

	3
	The specified file is either a named or anonymous pipe

	-1
	Cannot open the given file

Example

? FIL_type("LPT1") && 2

FIL_unzip() : Decompresses a file.

Caution

The compression format is not compatible with PKzip.

Syntax

FIL_unzip(szFileIn,szFileOut)  lSuccess

Parameters

szFileIn
the file to be uncompressed.

szFileOut
the resulting file.

Returns

lSuccess
.T. indicates that the file was uncompressed successfully; .F. otherwise.

Example

IF (! FIL_unzip("MYFILE.CMP","MYFILE.TXT"))
 ? "An error occurred while uncompressing the file"
ENDIF

See also

FIL_zip().

FIL_where() : Searches for the target file in a set of directories.

Comment

The FIL_where() routine searches for the target file in a set of directories which are listed in an environment variable. This variable name can be PATH, LIB, INCLUDE, or other user-defined variables.

Syntax

FIL_where(szFile,szEnvironment)  szFullPath

Parameters

szFile
file to look for.

szEnvironment
environment variable. Pay attention to the fact that environment variables are case sensitive!
Returns

szFullPath
full path where szFile was found. If szFile isn’t found in the directory set specified in the szEnvironment ... environment variable, a null string is returned.

Example

LOCAL szExcel

* If EXCEL is mentionned in the PATH environment variable,
* FIL_where() will find the fullpath where EXCEL.EXE is located

m.szExcel = FIL_where("EXCEL.EXE","PATH")

IF (EMPTY(m.szExcel))
 && Consider using FIL_get() rather than GETFILE()
 && in Visual FoxPro
 m.szExcel = GETFILE("EXE","Where is EXCEL.EXE?","Browse",1)
ENDIF

FIL_wipe() : File wiping.

Comment

The FIL_wipe() routine provides an easy, though not perfect, way to wipe out a file by putting the entire file at some binary value.

For getting the perfect solution, please head to the homepage of the Wipe utility (http://wipe.sourceforge.net/). Wipe is a secure file wiping utility. There are some low level issues that must be taken into consideration. One of these is that there must be some sort of write barrier between passes. Wipe uses fdatasync(2) (or fsync(2)) as a write barrier, or if fsync(2) isn't available, the file is opened with the O_DSYNC or O_SYNC flag. For wipe to be effective, each pass must be completely written. To ensure this, the drive must support some form of a write barrier, write cache flush, or write cache disabling. SCSI supports ordered command tags, has a force media access bit for commands, and write cache can be disable on mode page 8. IDE/ATA drives support write cache flushes and write cache disabling. Unfortunately, not all drives actually disable write cache when asked to. Those drives are broken. Write caching should always be disabled, unless your system is battery backed and always powers down cleanly.

Syntax

FIL_wipe(szFile)  lSuccess

Parameters

szFile
file to wipe out.

Returns

lSuccess
.T. if the whole file was written; .F. if not.

Example

&& If you're trying to cheat

IF (lCheating)
 FIL_wipe("myconfig.dll")
ENDIF

FIL_wreain() : Reads a character string from WIN.INI file.

Syntax

FIL_wreain(szSection,szEntry)  szString

Parameters

szSection
section of WIN.INI.

szEntry
key name that appears under the section name.

Returns

szString
string pertaining to entry.

Example

IF (FIL_wreain("MYAPP","PassWord") <> cPassWord)
 ? "Wrong password !"
ENDIF

FIL_wriini() : Copies a character string into a .INI file.

Alias

WritePrivateProfileString()

Syntax

FIL_wriini(szSection,szEntry(.NULL.,szString(.NULL.,szIniFile)  lSuccess

Parameters

szSection
section of the .INI file to write to.

szEntry
key name that appears under the section name. If this parameter is a .NULL., the section is deleted from the .INI file.

szString
string to write to .INI file. If this parameter is a .NULL., the entry is deleted from the .INI file.

szIniFile
.INI file name.

Returns

lSuccess
.T. if writing is successful; .F. if not.

Example

IF (! FIL_wriini("WALLPAPER" , ;
 "Fill file" , ;
 "FILLER.BMP", ;
 "MYAPP.INI" ;
) ;
)
 ? ".INI update failed"
ENDIF

FIL_write() : Writes a character string to a file.

Remark

FIL_write() depends on the File Opening Strategy which can be set by the FIL_SetOpenStrategy() function of FOCUS.FLL. The Opening Strategy controls how FOCUS.FLL is supposed to access files through low-level file functions, either using the Win32 API or using the FoxPro API. One major disadvantage of the FoxPro API is that files cannot be opened in a SHARE mode. The Opening Strategy is set to 2 by default (1=Win32 API; 2=FoxPro API). If the Opening Strategy, at the time you call FIL_write(), is set to 2, FIL_write() will call the _FWrite() FoxPro API function; if it is set to 1 (Win32 API), FIL_write() will call the WriteFile() Win32 service. A file that has been opened with the Win32 API, cannot be accessed with the FoxPro API in subsequent calls.

Syntax

FIL_write(nHandle,szString[,nBytes])  nWritten

Parameters

nHandle
file handle.

szString
string to write to the file.

nBytes
number of bytes to write. This parameter is optional. When not passed, the entire string is written to the file.

Returns

nWritten
number of bytes actually written to the file

FIL_wsecti() : Reads WIN.INI section.

Syntax

FIL_wsecti(szSection)  cEntries

Parameters

szSection
section to read.

Returns

cEntries
all entries for given section.

Example

? "Printer list",FIL_wsecti("devices")

FIL_wwriin() : Copies a character string into the WIN.INI file.

Syntax

FIL_wwriin(szSection,szEntry,szString)  lSuccess

Parameters

szSection
section of WIN.INI.

szEntry
key name that appears under the section name.

szString
string to write to WIN.INI file.

Returns

lSuccess
.T. if writing is successful; .F. if not.

Example

IF (! FIL_wwriin("MYAPP" , ;
 "Desktop" , ;
 "640 480 256" ;
) ;
)
 ? ".INI update failed"
ENDIF

FIL_zip() : Compresses a file.

Caution

The compression format is not compatible with PKZip!

Syntax

FIL_zip(szFileIn,szFileOut)  lSuccess

Parameters

szFileIn
the file to be compressed.

szFileOut
the resulting file.

Returns

lSuccess
.T. indicates that the file was compressed successfully; .F. otherwise.

Example

IF (! FIL_zip("MYFILE.TXT","MYFILE.CMP"))
 ? "An error occurred while compressing the file"
ENDIF

See also

FIL_unzip().

FIL_zipLastError() : Last error encountered while in FIL_zip()/FIL_unzip().

Syntax

FIL_zipLastError()  szLastError

Parameters

None.

Returns

szLastError
last error that occurred when using FIL_zip() or FIL_unzip().

_969731790

