Log Functions

Log Functions

Functions Synopsis

FOCUS.FLL provides basic services to write log files, files that you want to write information to for tracing purposes. A good example of a log is a file in which an application stores "secret" information such as user actions, choices, decisions, mistakes, etc.

FOCUS.FLL supports up to 15 simultaneous logs. When FOCUS.FLL is unloaded from memory it ensures that all log files still opened are closed properly. In the future FOCUS.VCX will use the capabilities of FOCUS.FLL to handle the application log file.

You might expect the log functions to be improved in a very near future to accommodate needs like encrypting a log file, compressing a log file, reading a log file, reducing a log file, etc., all functions that already exist in FOCUS.FLL but which are still to be implemented with log files.

Using log file functions usually starts with the following calls :

&& Test whether we still have a log file available
IF (LOG_FindFirstLog() != -1)
 && Set a log file. If the file does not exist, it is automatically
 && created. If it exists, it is merely opened in SHARE mode, both
 && for read and write operations (which is a major advantage over
 && Visual FoxPro functions
 nHandle = LOG_Set("C:\MYLOG.LOG",1000000)
 && If we got a valid handle
 IF (nHandle != -1)
 LOG_Append(nHandle,"This is a line of text")
 && When the log file is no longer needed, you can close it
 LOG_Close(nHandle)
 ENDIF
ENDIF

Play around with LOG_*() functions and report what are the functions that are missing according to your needs.

LOG_Append() : Appends a line of text to a log file.

Syntax

LOG_Append(nLog,szLine)  lSuccess

Parameters

nLog
log file handle given by LOG_Set().

szLine
line of text to be added to the log file.

Returns

lSuccess
.T. indicates that the line was successfully added at the end of the log file; .F. otherwise.

Example

&& Test whether we still have a log file available
IF (LOG_FindFirstLog() != -1)
 && Set a log file. If the file does not exist, it is automatically
 && created. If it exists, it is merely opened in SHARE mode, both
 && for read and write operations (which is a major advantage over
 && Visual FoxPro functions
 nHandle = LOG_Set("C:\MYLOG.LOG",1000000)
 && If we got a valid handle
 IF (nHandle != -1)
 LOG_Append(nHandle,"This is a line of text")
 && When the log file is no longer needed, you can close it
 LOG_Close(nHandle)
 ENDIF
ENDIF

LOG_Close() : Closes a log file.

Syntax

LOG_Close(nLog)  lSuccess

Parameters

nLog
log file handle given by LOG_Set(). All log files are closed automatically when FOCUS.FLL is removed from memory.

Returns

lSuccess
.T. indicates that the file was successfully closed; .F. otherwise.

Example

&& Test whether we still have a log file available
IF (LOG_FindFirstLog() != -1)
 && Set a log file. If the file does not exist, it is automatically
 && created. If it exists, it is merely opened in SHARE mode, both
 && for read and write operations (which is a major advantage over
 && Visual FoxPro functions
 nHandle = LOG_Set("C:\MYLOG.LOG",1000000)
 && If we got a valid handle
 IF (nHandle != -1)
 LOG_Append(nHandle,"This is a line of text")
 && When the log file is no longer needed, you can close it
 IF (! LOG_Close(nHandle))
 ? "Log file cannot be closed"
 ENDIF
 ENDIF
ENDIF

LOG_FindFirstLog() : Finds the first available log handle.

Syntax

LOG_FindFirstLog()  nLog

Parameters

None.

Returns

nLog
log file handle or –1 if not handle left.

Example

&& Test whether we still have a log file available
IF (LOG_FindFirstLog() != -1)
 && Set a log file. If the file does not exist, it is automatically
 && created. If it exists, it is merely opened in SHARE mode, both
 && for read and write operations (which is a major advantage over
 && Visual FoxPro functions
 nHandle = LOG_Set("C:\MYLOG.LOG",1000000)
 && If we got a valid handle
 IF (nHandle != -1)
 LOG_Append(nHandle,"This is a line of text")
 && When the log file is no longer needed, you can close it
 IF (! LOG_Close(nHandle))
 ? "Log file cannot be closed"
 ENDIF
 ENDIF
ENDIF

LOG_LastError() : Determines the last error that occurred within the LOG_*() functions.

Alias

LOG_GetLastError()

Syntax

LOG_LastError()  szErrorCode

Parameters

nLog
log file handle given by LOG_Set(). All log files are closed automatically when FOCUS.FLL is removed from memory.

Returns

szErrorCode
message describing the last error that occurred within the LOG_*() functions, or "The command completed successfully" if everything was OK.

Example

&& Test whether we still have a log file available
IF (LOG_FindFirstLog() != -1)
 && Set a log file. If the file does not exist, it is automatically
 && created. If it exists, it is merely opened in SHARE mode, both
 && for read and write operations (which is a major advantage over
 && Visual FoxPro functions
 nHandle = LOG_Set("C:\MYLOG.LOG",1000000,2)
 && If we got a valid handle
 IF (nHandle != -1)
 LOG_Append(nHandle,"This is a line of text")
 && When the log file is no longer needed, you can close it
 IF (! LOG_Close(nHandle))
 ? "Log file cannot be closed",LOG_LastError()
 ENDIF
 ENDIF
ELSE
 ? "Error:",LOG_LastError()
ENDIF

LOG_LastVersion() : Returns the file stamp of LOG functions.

Remark

This function helps the developer identifying the last version of a set of functions. Sometimes the global version information of FOCUS.FLL (MIS_major() and MIS_minor()) does not help tracking down the changes in a project. Starting with version 6.0 of FOCUS.FLL, each source file has now an internal date and time stamp.

Syntax

LOG_LastVersion()  szLastVersion

Parameters

None.

Returns

szLastVersion
string identifying the last version of the functions set. The string is similar to "C:\Focus\5.0\LOG.C-Mon Oct 19 15:55:22 1998".

LOG_Set() : Sets a log file.

Syntax

LOG_Set(szFile,nMaximumLength,nStrategy)  nLog

Parameters

szFile
name of the file in which the information will be logged.

nMaximumLength
maximum size of the log file. This parameter is ignored for the moment.

nStrategy
strategy to apply when the log file is full.

Returns

nLog
log file handle or –1 if a log handle wasn't assigned. Don't use this handle with low-level functions of FOCUS.FLL such as FIL_Open() or with functions of Visual FoxPro such as FOPEN(). Log handles are special handles of FOCUS.FLL that have nothing to do with file handles in general.

Example

&& Test whether we still have a log file available
IF (LOG_FindFirstLog() != -1)
 && Set a log file. If the file does not exist, it is automatically
 && created. If it exists, it is merely opened in SHARE mode, both
 && for read and write operations (which is a major advantage over
 && Visual FoxPro functions
 nHandle = LOG_Set("C:\MYLOG.LOG",1000000,2)
 && If we got a valid handle
 IF (nHandle != -1)
 LOG_Append(nHandle,"This is a line of text")
 && When the log file is no longer needed, you can close it
 IF (! LOG_Close(nHandle))
 ? "Log file cannot be closed"
 ENDIF
 ENDIF
ENDIF

LOG_Successful() : Returns the string that is used to declare that the last operation has been successfully executed.

Syntax

LOG_Successful()  szConstant

Parameters

None.

Returns

szConstant
"The command completed successfully".

Example

&& Test whether we still have a log file available
IF (LOG_FindFirstLog() != -1)
 && Set a log file. If the file does not exist, it is automatically
 && created. If it exists, it is merely opened in SHARE mode, both
 && for read and write operations (which is a major advantage over
 && Visual FoxPro functions
 nHandle = LOG_Set("C:\MYLOG.LOG",1000000)
 && If we got a valid handle
 IF (LOG_LastError() == LOG_Successful())
 LOG_Append(nHandle,"This is a line of text")
 && When the log file is no longer needed, you can close it
 IF (! LOG_Close(nHandle))
 ? "Log file cannot be closed"
 ENDIF
 ENDIF
ENDIF

