Timer Functions

Timer Functions

Functions Synopsis

Timer functions can definitely help you designing procedures that will be interrupted at a regular time interval. Examples of such timer functions are numerous: alarms, CD front panel update, stopwatch, etc. These functions were existing in FOCUS.FLL for FoxPro 2.5 already. They are provided for backward compatibility because, with the advent of Visual FoxPro 3.0, the developer has now native timers at his disposal.

Timers

The use of timers implies 3 basic steps:

1. to tell FOCUS which command to launch at given time interval (TIM_proc())

2. to set the global timer (TIM_set())

3. to kill the timer (TIM_kill())

Unlike other libraries, with FOCUS.FLL you can customize the command that must be executed at a regular time interval. This command can be any valid FoxPro statement such as DO MYPROC, @ 10,10 SAY TIME(), etc. TIM_proc() provides this service to you.

After you told FOCUS.FLL the command to be executed, you should specify the time interval you want to set. For this purpose, use the TIM_set(TimeInterval) function. It will return a timer identifier, which you’ll have to use to kill the given timer when you want to stop it.

When you definitely want to change the timer or if you simply want to stop it, please use the TIM_kill() function and pass it the timer identifier that was returned by TIM_set().

Make sure when you quit your FoxPro application to kill the timer otherwise you may hang up the computer.

Limitations

So far, FOCUS accepts to position only 1 timer at a time. For this reason, we call it the global application timer. In the future, more timers will be available.

Example

Coming up is an example of a routine that sets the global timer to a command whose aim is to display a clock during GET editing.

SET LIBRARY TO FOCUS && Enable FOCUS functions
PUBLIC gtTimer
PRIVATE szVar

szVar = SPACE(11) && Prepare variable

TIM_proc("WAIT WINDOW (TIME(1))") && Tailor timer command
gtTimer = TIM_set(1000) && Time interval set at 1s
 && tTimer = timer identifier
@ 1,1 GET szVar DEFAULT "Hello World"
READ

TIM_kill(gtTimer) && Kill timer

SET LIBRARY TO && Disable FOCUS functions

Obsolete

TIM_set(), TIM_kill() and TIM_proc() are obsolete. They have been superseded by the TMR_create() and TMR_destroy() which provide higher precision and which can be used to create multiple timers instead of a unique global timer.

High Precision Timers

High Precision timers are timers used in multimedia timers, where, for example, there are needed for MIDI sequencing and so on. High Precision timers are needed to really interrupt Visual FoxPro while it is currently executing a command such as REINDEX, PACK, etc. These commands, when operating on large tables, can take a while before completion. High Precision timers can therefore be used to display a progress bar.

TIM_kill() : Kills the global timer.

Remark

This function is obsolete. It is provided for backward compatibility.

Syntax

TIM_kill(tTimer)  .T.

Parameters

tTimer
timer identifier. This identifier identifies the timer that must be killed.

Returns

.T.
the function always returns a logical .T.
Example

LOCAL tTimer

TIM_proc("WAIT WINDOW (TIME()) NOWAIT")

tTimer = TIM_set(1000)

<more instructions>

TIM_kill(tTimer)

TIM_proc() : Customizes the command to be executed by the global timer.

Remark

This function is obsolete because Visual FoxPro has now timers (it wasn't the case in FoxPro 2.5!). It is provided for backward compatibility.

Syntax

TIM_proc(szCommand)  .T.

Parameters

szCommand
FoxPro command.

Returns

.T.
the function always returns .T..

Example

LOCAL tTimer

TIM_proc("WAIT WINDOW (TIME()) NOWAIT")

tTimer = TIM_set(1000)

<more instructions>

TIM_kill(tTimer)

TIM_set() : Sets the global timer.

Remark

This function is obsolete. It is provided for backward compatibility.

Syntax

TIM_set(nMilliSeconds)  tTimer

Parameters

nMilliSeconds
time interval in milliseconds.

Returns

tTimer
the function returns the timer identifier.

Example

LOCAL tTimer

TIM_proc("WAIT WINDOW (TIME()) NOWAIT")

tTimer = TIM_set(1000)

<more instructions>

TIM_kill(tTimer)

TMR_Create() : Creates a timer.

Caution

Don't create timers with "High Precision" yet. These timers create illegal operations. Although they're supposed to be the most accurate timers and they're supposed to really interrupt Visual FoxPro in what it currently does, these timers should still be fine-tuned. In fact, High Precision timers created with the timeSetEvent() function are running in a separate thread and separate threads always proved to be a problem with Visual FoxPro. Stay tuned.

Syntax

TMR_Create(nMilliSeconds,szCommand[,xHighPrecision])  nHandle

Parameters

nMilliSeconds
time interval in milliseconds.

szCommand
command to be executed by the timer.

xHighPrecision
this parameter is optional. If passed, the function creates a "High Precision" timer; if not passed, the function creates a "Normal Precision" timer.

Returns

nHandle
handle to a timer, or –1 if no timer could be created.

Example

&& This example will create a timer that will display the current time
&& while waiting for a key during 10 seconds.
LOCAL nHandle

nHandle = TMR_Create(500,"WAIT WINDOW (TIME(1)) NOWAIT")

INKEY(10,"HM")

TMR_Destroy(nHandle)

TMR_Destroy() : Destroys a timer.

Caution

Each timer HAS to be destroyed before releasing FOCUS.FLL.

Syntax

TMR_Destroys(nHandle)  lSuccess

Parameters

nHandle
handle of the timer to destroy.

Returns

lSuccess
.T. if the timer was successfully destroyed; .F. if not.

Example

&& This example will create a timer that will display the current time
&& while waiting for a key during 10 seconds.
LOCAL nHandle

nHandle = TMR_Create(500,"WAIT WINDOW (TIME(1)) NOWAIT")

INKEY(10,"HM")

TMR_Destroy(nHandle)
TMR_HandlesCount() : Returns the maximum number of handles.

Syntax

TMR_HandlesCount()  nHandles

Parameters

None.

Returns

nHandles
maximum umber of timer handles.

TMR_HandlesFree() : Returns the number of free timer handles.

Syntax

TMR_HandlesFree()  nHandles

Parameters

None.

Returns

nHandles
number of free handles.

TMR_info() : Returns timer information.

Syntax

TMR_Info(nHandle,nType)  xInfo

Parameters

nHandle
handle identifying the timer to be queried. Be careful to pass a handle whose value is comprised between TMR_MinHandle() and TMR_MaxHandle(); otherwise illegal operations can appear.

nType
information type to query.

	VALUE
	DESCRIPTION

	1
	Command associated with the timer. Return type: character string.

	2
	Internal timer identifier. Return type: numeric.

	3
	Timer interval. Return type: numeric.

	4
	Timer precision: 0 for NORMAL_PRECISION, 1 for HIGH_PRECISION. Return type: numeric.

	5
	Timer suspended or not; .T. if timer is suspended, .F. if not. Return type: logical.

Returns

xInfo
the info as it is queried, depending on the nType paramater.

	nType
	DESCRIPTION

	1
	Command associated with the timer. Return type: character string.

	2
	Internal timer identifier. Return type: numeric.

	3
	Timer interval. Return type: numeric.

	4
	Timer precision: 0 for NORMAL_PRECISION, 1 for HIGH_PRECISION. Return type: numeric.

	5
	Timer suspended or not; .T. if timer is suspended, .F. if not. Return type: logical.

Example

LOCAL nHandle

nHandle = TMR_create(1000,"WAIT WINDOW (TIME()) NOWAIT")
? TMR_info(nHandle,1) && "WAIT WINDOW (TIME()) NOWAIT"
? TMR_info(nHandle,2) && 572 (Internal identifier – never used)
? TMR_info(nHandle,3) && 1000 (Internal in milliseconds)
? TMR_info(nHandle,4) && 0 (Normal precision as opposed to 1 for high precision)
? TMR_info(nHandle,5) && .F. (Timer is not suspended)

TMR_LastError() : Returns an error string indicating the nature of the last error encountered.

Syntax

TMR_LastError()  szError

Parameters

None.

Returns

szError
last error string.

TMR_LastVersion() : Returns the file stamp of TMR functions.

Remark

This function helps the developer identifying the last version of a set of functions. Sometimes the global version information of FOCUS.FLL (MIS_major() and MIS_minor()) does not help tracking down the changes in a project. Starting with version 6.0 of FOCUS.FLL, each source file has now an internal date and time stamp.

Syntax

TMR_LastVersion()  szLastVersion

Parameters

None.

Returns

szLastVersion
string identifying the last version of the functions set. The string is similar to "C:\Focus\5.0\TIMER.C-Mon Oct 19 15:55:22 1998".

TMR_MaxHandle() : Returns the highest possible handle.

Syntax

TMR_MaxHandle()  nHandle

Parameters

None.

Returns

nHandle
highest potential handle.

TMR_MinHandle() : Returns the lowest possible handle.

Syntax

TMR_MinHandle()  nHandle

Parameters

None.

Returns

nHandle
lowest potential handle.

TMR_Resume() : Resumes a timer.

Syntax

TMR_Resume(nHandle)  lSuccess

Parameters

nHandle
handle identifying the timer to be resumed. Be careful to pass a handle whose value is comprised between TMR_MinHandle() and TMR_MaxHandle(); otherwise illegal operations can appear.

Returns

lSuccess
.T. if the timer is successfully resumed; .F. if not.

Example

LOCAL nHandle

nHandle = TMR_Create(150,"WAIT WINDOW (TIME(1)) NOWAIT")

IF (nHandle != -1)
 INKEY(20,"HM") && Let the timer be active for 20 seconds
 TMR_Suspend(nHandle) && Suspend the timer now
 INKEY(10,"HM") && Let the timer be suspended for 10 seconds

 TMR_Resume(nHandle) && Resume it now
ENDIF

TMR_Suspend() : Suspends a timer.

Syntax

TMR_Suspend(nHandle)  lSuccess

Parameters

nHandle
handle identifying the timer to be suspended. Be careful to pass a handle whose value is comprised between TMR_MinHandle() and TMR_MaxHandle(); otherwise illegal operations can appear.

Returns

lSuccess
.T. if the timer is successfully suspended; .F. if not.

Example

LOCAL nHandle

nHandle = TMR_Create(150,"WAIT WINDOW (TIME(1)) NOWAIT")

IF (nHandle != -1)
 INKEY(20,"HM") && Let the timer be active for 20 seconds
 TMR_Suspend(nHandle) && Suspend the timer now
 INKEY(10,"HM") && Let the timer be suspended for 10 seconds

 TMR_Resume(nHandle) && Resume it now
ENDIF

