Function Categories

FOCUS.FLL is a Dynamic Linked Library for Visual FoxPro. It currently contains about 1800 functions, all divided in categories:

	· BMP Functions

· CD Functions

· Clipboard Functions

· Cursor Functions

· Date Functions

· DBF Functions

· Data Driven Application Functions

· Common Dialog Functions

· Editor Functions

· Event Functions

· File Functions

· Font Functions

· FTP Functions

· HTML/HTTP Functions

· INI File Functions

· IP File Functions

· Keyboard Functions

· Kernel Functions

· Language Setting Functions

· Locale Settings

· Log Functions

· LZH Functions

· MCI Functions

· Metric Functions
	 Miscellaneous Functions

 Menu Functions

 Mouse Functions

 Messaging Functions

 Network Functions

 Notification Functions

 Numeric Functions

 Object Oriented Functions

 Printer Functions

 Registry Functions

 Screen Functions

 Shell Functions

 Sizeof Functions

 Sound Functions

 System Parameters Info Functions

 String Functions

 System Functions

 Time Functions

 Timer Functions

 Application Tracing Oriented Functions

 User Information Functions

 Version Functions

 Video Functions

 Windows Functions

KERNEL.DLL

Some of the basic services of FOCUS.FLL are stored in a DLL: that's KERNEL.DLL! YOU MUST have KERNEL.DLL INSTALLED BEFORE you can start using FOCUS.FLL! The DLL has to be placed in the System directory of Windows (preferred solution) or in the same directory as FOCUS.FLL.

FLLs vs DLLs vs native VFP functions

Using FLLs has a clear advantage: you simply need to load the library and all the functions it contains are becoming available to your application.

Compared to DLLs, FLLs are much easier to use because you don't have to prototype every function you intend to use.

Now ... as far as speed is concerned, there is not really a difference between DLLs and FLLs. Flls are DLLs with a specific format. The FLL format makes it possible to neglect the prototyping stage because it's all stored in an internal table of the FLL. Visual FoxPro will walk through this table to locate the function that needs to be executed. This search through the internal table can require some time and it actually does. When a DLL function is declared VFP gets a pointer to the function. Calling the function does not require any further search in the DLL.

Finally, if you compare native VFP functions to DLL calls or FLL calls, VFP has an incredible advantage in terms of speed! This is not linked to the efficiency of the C code but it has something to do with the priorities of VFP. Put it in this way: you're VFP, here's a function you need to execute, where are you going to see FIRST if you know this function or not? In your native stack of functions? In the stack of UDFs? In the current procedure file? In SET PROC TOs? In all the loaded FLLs? In the DLLs? Well, obviously the first in the list is the one that is advantaged here and that's exactly what is happening.

In which order VFP is actually doing that? It's hard to tell for sure. And as far as we know, there is no formal documentation about this topic. We can only assume what our tests are revealing. And you know what? It seems that FLLs are quicker than DLLs because DLLs calls come at the end of the Search List. So a function is first looked in the FLL table, then if it is not found, VFP tries to resolve the function name with a pointer to a DLL function ... but that is already a big penalty for the DLL!

We hope it clarifies this behavior.

Floating the Code

You want to know about speed penalty? Well, read this. In all the programs we have written at FastWrite we often use functions of our own instead of native VFP functions. Even the functions of FOCUS.FLL are derived! You know why? Because we hate to be depending on somebody else's code. Therefore, we wrap the VFP language (only functions) in our own: no LEN() function! We use FW_LEN() instead ... even if the FW_LEN() is nothing else but a name replacement:

 FUNCTION FW_LEN(xArg)

 RETURN (LEN(xArg))

Should the LEN() function change someday ... then we only need to go to 1 place to change the entire program! That's what we call «Floating the Code»! Believe it or not, we even do this with our own FOCUS.FLL so that our applications are not really depending on FOCUS.FLL! Should a function of our library fail, then we can simply substitute it with another code.

Of course, even if you admit this undisputed principle, you may wonder whether that's wise to do at the performance level. Well, it's all depending on your code! We actually spend a lot of time fine-tuning the algorithms we use and we often found an incredible boost in performance by changing the way we do things. Going from one algorithm to another does not mean that we change our functions. They all remain the same. Still we kill to birds with one stone: code maintainability is improved and speed is OK. And believe us, when it comes down to control industrial process in real-time, speed is a critical issue!

Shareware Version or Registered Version

FOCUS.FLL is coming as a shareware. It comes as 2 separate versions:

· Shareware Version

· Registered Version

Both versions are identical in terms of functionality. There is no limitation of any kind if you plan to use the shareware version. However, after a certain time period, the shareware version will start displaying a popup window each time the library loads in memory. If you plan to use FOCUS.FLL for software you distrinbute, you definitely need to go to the Registered version.

Amongst the advantages of the Registered Version, please consider that you have access to the C source code of the library.

