
Section 1 Chapter 3: What's Not So Obvious 59

Chapter 3
What's Not So Obvious

So far we have discussed all major object-oriented concepts and how they are
implemented in Visual FoxPro. However, Visual FoxPro supports a couple of features
you won't find in other object-oriented languages. This chapter gives us the chance to
discuss these and other issues that aren't as obvious as they might seem.

Instance programming and pseudo-subclassing
Visual FoxPro has features called instance programming and pseudo-subclassing. You may not
have heard about them since they aren't widely discussed or generally known; however, almost
everybody uses them without even knowing it.

This feature must be easy to use, but every now and then, the lack of specific knowledge
brings up some serious problems. For this reason, I'd like to discuss this issue in detail, which
should help you to use all the power of pseudo-subclassing and instance programming without
running into their potential problems.

Instance programming
What exactly is instance programming? Well, let me give you a little example. Let's assume we
create a form class that contains one command button. We add some code to the command
button to release the form when the button is clicked. Figure 1 illustrates this scenario.

Figure 1 . Our form class and command button.

To review: We created a new form class (let's call it IP for instance programming), which
is a subclass of the FoxPro base class Form. The IP class has a member object called
cmdCancel, which is a command button. This button is a subclass of … well … let's have a
look at the Properties window in Figure 2.



60 Advanced Object Oriented Programming with Visual FoxPro 6.0

Figure 2 . The Properties window.

Figure 3 . The current class of the Properties window.

Hmmm … the Properties window says it doesn't have a parent class. That's strange. After
all, I told you we couldn't create a class that didn't have a parent class. So what is the actual
class? See Figure 3.

FoxPro says the current class is CommandButton. That's strange, too! We just created a
class that doesn't have a parent class, and the current class name is a FoxPro base class. Did we
create such a class?

In fact, we didn't! All we created was a subclass of the FoxPro form class that had a
predefined instance of a command button. There was no subclassing going on with the button.
It is just an instance of the CommandButton FoxPro base class. So theoretically, we shouldn't
be able to add code to one of the button's methods. Rather, we should create a button class, add
the code there, and drop the button on the form. Everything else would break all kinds of object
rules, because we would add code to an object rather than to a class.

However, adding code directly to object instances allows us to develop prototypes and
actual applications at tremendous speed; it's one of FoxPro's most important Rapid Application
Development (RAD) features.



Section 1 Chapter 3: What's Not So Obvious 61

By the way, creating FoxPro forms is 100 percent instance programming because not even
the form itself is subclassed.

Pseudo-subclassing
Now let's take this a step further and create a subclass of the whole IP form class. This class
(let's call it PS for pseudo-subclassing) inherits everything from the IP class, including
properties, methods, and all predefined member objects plus their assigned properties and
methods.

Take note that only the form has been subclassed, just as in the IP class. The button is still
of class CommandButton and doesn't have a parent class (well, it has, but only an internal one).
However, FoxPro is very generous and will still allow you to add code to the button. In fact,
you can even overwrite and inherit code just as if it were a real subclass. This is called pseudo-
subclassing.

Most people use the terms pseudo-subclassing and instance programming
interchangeably. However, they are not the same thing. Internally, pseudo-subclassing and
instance programming are handled very differently. As you'll see later (when I explain how
visual classes are stored internally), visual classes are stored in FoxPro tables. Each class gets
one record in this table, as do all the newly defined member objects. FoxPro stores the code
that is added to an instance (instance programming) in each member's record. When applying
pseudo subclasses, the new class inherits all the information about the members but does not
create a record for each of them, so FoxPro doesn't have a good place to store the new code and
the overwritten properties. So it uses a little trick and stores this data directly with the class
record. To assign the code and properties to the member objects, FoxPro adds the name of each
object. So the button's Click method is now called "Function cmdCancel.Click" rather than
"Function Click" as it would be in normal scenarios.

Of course, the user never sees these things, but he might experience some resulting
problems. Let's try to fool FoxPro a little. To do so, we go back to the IP class and rename the
Cancel button cmdCancelButton. Now let's look at the button in the PS class. The button is still
there and it inherited the new name from its parent class. However, for some strange reason, all
the code we assigned to this button has been removed. On first sight, this might appear to be a
bug, but if you think about it, it's rather simple. As we've just discussed, FoxPro stores the name
of the member object in order to assign the code to it. The code that has been removed
belonged to an object called cmdClick. Of course, this object can't be found anymore because
we renamed it. The subclass cannot know that the button in the form is still the same object. It
thinks we removed the original object and added a new one. If we want to recover the original
code, we need to cancel the current operation, go back to the parent class, and rename the
button to its original name. Make sure you don't save the subclass. Otherwise FoxPro simply
removes all your code and you'll have to start over from scratch.

This behavior might seem bad, but it used to be worse. In earlier versions, FoxPro thought
the class library was corrupt whenever it couldn't find referenced objects, and wouldn't allow us
to modify it at all. Imagine if you renamed an object in a class at the beginning of a class
hierarchy. You might have to start your whole project from scratch again. Considering these
facts, the current situation appears quite acceptable. After all, the advantages outweigh the
disadvantages by far, especially when you're aware of the possible problems.



62 Advanced Object Oriented Programming with Visual FoxPro 6.0

But wait, there's more! If you use DoDefault() in the member object's method, you can
move on to the next paragraph, but if you use the scope resolution operator (::), you are in deep
trouble. The scope resolution operator requires the name of the parent class, the method name,
and possibly some parameters. But as we already know, the command button doesn't have a
parent class, so we can't provide the necessary information for the scope resolution operator.
This is one of the reasons why DoDefault() was introduced in Visual FoxPro 5.0. However,
there are some tricks to make this work, even if you use Visual FoxPro 3.0, which didn't have
DoDefault(). Here's an example that uses the previous example to demonstrate how this would
work:

IP.cmdCancel::Click()

This code would go in the Click() event of the button. Remember I told you FoxPro simply
stores the methods with the class and adds the name to assign the code to each object? We can
now use this fact to our advantage and add the object name in front of the message name. This
way, FoxPro can identify the code we try to run and execute it, even if the syntax doesn't seem
to match the normal scope resolution requirements.

However, I recommend using DoDefault() instead, even though you might take a bit of a
performance hit. I think the ease of maintenance outweighs that by far. Keep in mind that
neither instance programming nor pseudo-subclassing is truly object-oriented. They are
shortcuts to make the developer's life easier and more productive. If you want to avoid all the
troubles this might introduce, you could go the truly object-oriented route. You could create a
form class, create a button class, and finally create a subclass of the form class and change
nothing but drop the button on it. Whenever you wanted to change the behavior of the button,
you would create a subclass of the button and another subclass of the original form, and drop
the button on this form as well. This becomes a nightmare if you have many member objects.
Imagine a form that has only five members. Depending on how you want to change the
behavior, you could end up with as many as 25 different subclasses of the form. Now imagine
you have 25 different objects rather than five. In this case, you might end up with 625 different
subclasses. This, of course, would be the case only when you wanted to change the behavior of
each object independently from all the other objects, which is improbable.

I think you can see the issue, and I believe it's well worth it to accept the disadvantages of
instance programming and pseudo-subclassing instead.

Visual vs. non-visual classes
One of the great features of Visual FoxPro is its Visual Class Designer. It allows you to create
classes in a visual way rather than deal with a huge amount of source code. However, you don't
have to use the designer. You can always go the source code route; by doing so, you gain a
couple of advantages.



Section 1 Chapter 3: What's Not So Obvious 63

Advantages of non-visual classes
Let's examine a couple of reasons for using source-code-only classes. First, they might be a bit
faster. According to my own measurements, classes that are stored in PRGs instantiate about
twice as fast as classes that are stored in VCX libraries. This changes from scenario to scenario,
but it seems that source code classes are a lot faster, especially for first-time instantiation. Once
an instance of a class has been created, FoxPro caches the class definition, and the speed seems
to be about equal.

The reason for the speed disadvantages of visual classes is due to the way they are stored.
VCX files are simply DBFs with a different extension. When a class gets instantiated, FoxPro
scans the table, looks for compiled code that is stored in the table, and checks for information
about possible parent classes. If parent classes are found, they have to be searched as well.
Classes that are stored in PRG files are one huge chunk of compiled code, and VFP doesn't
have to add all the overhead of SEEKing classes and their inheritance information.

Another factor that needs to be considered is class size. The larger the class, the less the
difference in instantiation speed. The reason is simple. The bigger the class, the longer it takes
to instantiate it. If it takes 50 milliseconds to instantiate a class, it doesn't really matter that it
took three milliseconds to search the VCX and only one to find the definition in the PRG file.
However, if it only takes a millisecond or two to instantiate the class, an additional overhead of
three milliseconds matters a lot.

A couple of handling issues seem to be resolved a lot better in source code classes. Include
files (.H extension files), for instance, are hard to handle in visual classes, and you're also
limited to a single include file at a time. Further, you cannot use precompiler commands
wrapped around methods or property definitions.

Another issue is size. Visual class libraries have a tendency to grow huge, because every
time they are modified, FoxPro deletes the old version of your class and adds it again at the
bottom of the file. Also, a table with memo fields is always a little bigger than a plain text file.
Source code classes, on the other hand, are very compact. Furthermore, because source code
classes are stored in regular text files, file corruption isn't a big issue. VCX files, on the other
hand, are more fragile and might get corrupted every now and then.

The final advantage I want to point out is the ease of renaming classes, properties and
methods, and the ease of redefining class structures. However, this advantage might also turn
into a disadvantage because renaming and redefining can lead to other problems further down
the road.

Why not go the visual route?
Going the visual route has many advantages. Almost all of them are a result of the proper
internal organization of classes in each library. It's easy to browse source code on a per-class
basis. Viewing class hierarchies and inheritance trees is supported by many tools like the Class
Browser. Visual design tools consolidate properties and methods from classes and superclasses
and display all the available ones in a properly ordered list called Property-Sheet.

Using non-visual classes, you're on your own with all these issues. Non-visual class
libraries can be a big mess of code that has no particular order or organization whatsoever.
Properties and methods are spread over the whole file, possibly even over multiple files, and
there is no way to see them all at once. This makes it easy to forget about them, or even to
redefine them accidentally, since there is no integrated mechanism to warn you about a possible



64 Advanced Object Oriented Programming with Visual FoxPro 6.0

problem. This gets even trickier if you want to use predefined events. In the property sheet, you
can simply pick one of the available events and add code to it. In source code, this isn't so easy.
You have to remember the event names for each class and where each class was derived from.
Otherwise, you have to look it up, which is a very time-consuming process.

The Visual Class Designer takes care of all the stupid little standard tasks like adding
objects to containers, setting properties, and adding code to methods. Following the concept of
"information at your fingertips," the whole class definition is broken into pieces to show only
the part of the class you're currently working on. This enhances productivity a great deal so you
can concentrate on the essentials of programming, which is resolving a business problem—not
taking care of technical issues.

The majority of the visual design tools have been enhanced in Visual FoxPro 6.0. The
Visual Class Designer got a whole new dialog to manage methods, properties and member
objects, as shown in Figure 4.

Figure 4 . The Visual Class Designer's new Edit Property/Method dialog
for managing methods, properties and member objects.

Using this dialog, you can create and delete new properties and methods, specify member
visibility, and create access and assign methods. After using this dialog for a couple months, it
was hard for me to imagine going back to Visual FoxPro 5.0 and living without it.

Another great tool that has been around since the first version of Visual FoxPro is the
Class Browser. It has changed a lot since then; it's become easier to use and more powerful at
the same time. The new browser also has a slightly different look and feel, as illustrated in
Figure 5.



Section 1 Chapter 3: What's Not So Obvious 65

Figure 5 . The new Class Browser.

The browser allows you to view classes in hierarchical or alphabetical order, even across
class libraries. It also displays class details such as properties, methods and class
documentation. We'll examine the Class Browser in more detail in Chapter 5.

Of course, all these tools are only in addition to the centerpiece, which is the Visual Class
Designer itself. It consists of four main components: the Class window, the Code Snippet
Editor, the Properties window and the Classes/Controls toolbar. See Figure 6.

I do not intend to explain the details of the Class Designer because many other people have
spent a lot of time doing that already. I think the advantages of this visual design tool are rather
obvious.

A further advantage of visual classes is the ability to create builders. Builders can automate
tasks while designing a class. The concept of builders is unique to Visual FoxPro. It is based on
the fact that FoxPro always uses live objects in the Visual Class Designer. This means that you
can talk to classes programmatically, as if they were objects. This way you can assign
properties, add code to methods, and instantiate new member objects. Despite the fact that this
is an extremely interesting topic, I will leave this one to another book in this set.

Also, keep in mind that most third-party tools are optimized for visual class libraries. Even
some tools Microsoft provides rely on VCX storage. A typical example would be the Modeling
Wizards that I'll discuss in Section 3 of this book.

Visual classes: Nintendo for adults?
Here are some of the arguments I keep hearing: "Real programmers don't use visual design
tools" and "The Visual Class Designer is like a video game for adults." To make a long story
short: I couldn't agree less! (This is sort of like the old adage "Real programmers don't use
code generators.")

Does a person become a better programmer because he's able to specify a default value for
a property in source code rather than in a Properties window? I don't think so! Does one
become a better programmer because he is able to identify a method in a huge PRG file rather



66 Advanced Object Oriented Programming with Visual FoxPro 6.0

than getting to it with a double-click in the Visual Class Designer? I don't think so! Does one
become a better programmer because she can add member objects programmatically rather than
dropping them in a container by a simple mouse operation? I doubt it! Does one create more
efficient code when creating PRGs than when using VCXes? Well, maybe! But even if non-
visual classes have a slight performance advantage, other issues outweigh that by far. Creating
user interfaces in a non-visual way is quite a nightmare and the results are usually rather ugly.
And even for non-interface classes, productivity and handling benefits are overwhelming.

 Figure 6 . The four main components of the Visual Class Designer.

In the end, the only difference between good and bad programmers is the resulting
application they produce, and in order to create a good application, highly productive
programmers are needed. At the same time, code quality has to remain high.

Visual design tools, property sheets, code snippet editors and the Class Browser are
outstanding tools that raise a programmer's productivity and help to maintain code quality at the
same time. Let's be more productive!

Some classes are non-visual only
Unfortunately, not all classes are available in the Visual Class Designer. Among the ones that
can only be edited in source code are Pages (not PageFrames), Grid Columns and Headers.
However, you can subclass all these classes in source code.

Many of the classes that can't be modified in a visual way are specialized containers that
can only live in certain other containers. Pages, for instance, can only live in PageFrames, and
Columns can only live in Grids. Nevertheless, almost any kind of object can be contained in
these classes. Usually you'd modify the container classes in the Visual Class Designer and set
some kind of property to instantiate these specialized member objects. In Grids, for instance,



Section 1 Chapter 3: What's Not So Obvious 67

you can simply set the ColumnCount property and FoxPro will add new columns on the fly.
However, all the added columns are of the FoxPro base class Column and can't be of a special
user-defined class. If you want to add your own column class, you can define that in source
code, set the ColumnCount property to 0 and add the columns on the fly (at runtime) using the
AddObject() method. Because columns have to have some member objects, these must also be
instantiated on the fly or defined in the source code. No matter how this is done, you always
lose the advantages and power of the visual design tools.

Creating your own set of base classes
Using Visual FoxPro base classes directly without subclassing is a big no-no. You should
subclass each base class before instantiating it or using it in the Form Designer. This adds a lot
of flexibility to the design. You can always go back later, change a couple of properties, modify
some behavior or add new methods. This is especially important when starting with Visual
FoxPro, because it makes a project more forgiving—you can always go back and correct
mistakes you made earlier in the cycle.

Creating your own set of classes makes it possible to make system-wide changes within a
matter of minutes. Let's assume you discovered a bug that influences your whole system. I just
had such a bug. I used the InteractiveChange and the ProgrammaticChange events to discover
record pointer movement and other changes in text fields. However, sometimes this event
wouldn't fire, so I added an assign method for the Value property in my textbox base class that
fired an OnChange() method. I basically created my own system-wide event that would fire
whenever the Value property changed. This helped to resolve a problem that had us hooked for
months. After making this change (which took me only a couple of minutes), I was able to
remove about 50 items from our bug-tracking system. I could do this only because I had created
my own "top-level" entry point.

Using your own base classes does more than help to resolve your own mistakes and
problems. You can also use them to change standard behavior or appearance. Maybe you don't
like FoxPro's default font. No problem! Go to your base class and change it. It only takes a
couple of minutes…

This first level of subclasses is usually referred to as your own set of base or foundation
classes. Once you have this class library in place, you can basically forget about FoxPro's
original base classes. Unfortunately, there is no way to tell FoxPro to display these classes
instead of the internal base classes. This leaves us with the risk of using the wrong set of
classes, which might result in hard-to-find bugs.

Fortunately, there are a couple of tools that check class libraries and force the use of
certain base classes. The PowerBrowser is one of these tools. It comes with some
wizards that deal with all kinds of base class issues. This tool is freeware and can be

downloaded from the Developer's Download Files at www.hentzenwerke.com. Future updates
to this tool will be available at www.eps-software.com.

�



68 Advanced Object Oriented Programming with Visual FoxPro 6.0

Some suggestions
When creating your set of base classes, you can take care of some issues you might run into in a
later stage of your development cycle.

I'm always concerned with creating applications that provide an interface the user is
familiar with. Usually I stick to the Microsoft Office standards. One of the first steps to meet
these standards is to change the standard font for all controls from Arial to MS Sans Serif or to
the newer Tahoma. Font size should be 8 points. However, this could lead to problems if the
user runs large fonts. In this case I switch back to the Arial font, the logic for which is built into
my base classes.

I also try to make sure all objects have a consistent programming interface. Unfortunately,
many of the FoxPro base classes do things a little differently. Some have a Release method,
some don't. Some containers support an Objects collection while others have specialized ones
like Forms or Pages. Some objects have Show and Hide methods while others only have a
Visible property. I can take care of all these issues right in my base classes and save myself a
lot of headache later down the road.

I think you get the idea about what kind of things belong in your set of base classes. Keep
in mind that all the changes you made are subclassed into every single class you use in your
project. Therefore, you should be concerned about performance. Adding 10 milliseconds to the
instantiation time of a textbox might end up adding another second or two when instantiating a
complex form.

Having a powerful set of base classes can add a lot to your application and make it flexible
for changes later on. Nevertheless, you should be very careful with the changes you make. A
little change in a base class not only can fix a system-wide bug, but it also can introduce one.
Keep in mind that one small change can affect your whole application.


