Section 2 Chapter 9: Three-Tiered Development 271

Chapter 9
Three-Tiered Development

Lately there's been a lot of hype about three-tiered development. The main idea is to split
applications into different layers—the interface, the business logic and the data back
end. Many people tout three-tiered development as the best thing since sliced bread.
While it can't cure world hunger, it definitely helps me a great deal in my development
efforts.

A brief introduction

Every application has some kind of user interface, attached business logic and data back end.
Of course, each part can have a different appearance. The interface might be a regular windows
interface, a Web page, a voice interface or even an automated process or script. The data might
be stored in Visual FoxPro tables, in SQL Server databases, in XML files or any other kind of
storage. The business logic might be compiled into an EXE or some kind of COM component.
None of these pieces are specific to three-tiered architecture. You'll find them in any kind of
business application, whether it be a modern component-based Windows application or an old
mainframe monster.

A modern software development approach has to be a lot more flexible and powerful than
in past days. Changes must be implemented more quickly, cheaply and at a higher quality.
Applications are no longer monolithic. Data sources such as ADO, SQL Server and XML must
be used in addition to regular Visual FoxPro data. Different interfaces must be used, including
HTML, Windows interfaces and more exotic ones (at least for Visual FoxPro developers) such
as Windows CE. Even if you can do everything using FoxPro data and a regular Windows
interface, your app might need to talk to other components such as Microsoft Office. On top of
that, you will definitely need flexibility so you can quickly change parts of an interface or the
business logic without worrying about overall project quality or going through an enormous
amount of work.

The three-tiered model is designed to reduce design complexities and increase the
application developer's flexibility in creating, maintaining, and redeploying applications on
different platforms.

In the three-tiered approach, the interface, business logic and database layers are kept
separate. This can be done in various ways. All components are compiled separately in COM
components and EXEs, or the classes are simply kept in different libraries and inheritance trees,
but they are still compiled into one EXE, possibly using a monolithic Visual FoxPro approach.
The key is that the layers talk to each oty through a defined API and amet linked in
any other way. This means that, at any time, you can modify, change, or even replace a tier,
and—assuming that you continue to write to the same inter-tier APl—keep the entire system
working. The independence that you gain is the key to this approach. The rest of this chapter is
dedicated to explaining, supporting, defending, and preaching about this idea.

272 Advanced Object Oriented Programming with Visual FoxPro 6.0

The model-view-controller approach

Like many things in object-oriented development, the three-tiered architecture isn't really new.
Many of the traditional object-oriented languages such as Smalltalk have been using this
approach for quite a while. It was (and is) known as the "model-view-controller" design, where
the "model" is the data, the "view" is the interface and the "controller" is the business logic.
The Unified Modeling Language (UML—see Chapter 12) replaced this terminology with the
terms "user services," "business services" and "data services."

Better than sliced bread: sliced applications

Conceptually, the idea of three-tiered development is simple: You take your regular

applications and slice them in three layers. Interface elements belong in the interface layer.
Business rules, logic, and data validation belong in the middle tier, and the data store is in the
data layer. While this sounds easy, it's a significant change of view for the "traditional" FoxPro
developer. Because we have always had data controls that are "intimate" with the data, we have
always been able to design interfaces that directly access data in our tables and, with the
VALID clause, do validation in the interface. The "one-tier" model (or one and a half if you

want to argue about editing memory variables instead of the table) was the natural way to go
and, with FoxPro, worked quite well.

Well, Visual FoxPro is now playing in a larger arena and, if you want to structure
applications to play the new game, you are going to have to move away from the old ways of
doing things. You cannot put your logic into the Valid event of a field in a form. Neither can
you directly bind fields to data. You can't even have these parts in the same composite object.
Fortunately, all this complies with most of the principles of proper object-oriented design.
Rather than using a part of the interface to validate entries, you would call out to a behavioral
object. Data would be bound to the interface through well-defined object interfaces. The actual
implementation can vary greatly, depending on whether you create COM components or a
monolithic Visual FoxPro application (see below).

The most difficult part of three-tiered development is following the rule of keeping the
three tiers separate. The interface and business logic components are especially hard to
separate. It's tempting to add some code to one of the controls in a form rather than creating
another method in a behavioral object that does all the calculations. Unfortunately, as soon as
you take such a shortcut, you break your entire three-tiered model. This will set you back to the
prior level of software development. Self-control (if you are developing an application by
yourself) and code reviews (in team development scenarios) are key. In most areas of
development, you can get away with bending the rules every now and then. This is not true for
three-tiered architecture. Bend the rules once and you'll lose all the advantages but still carry all
the burdens.

Three-tiered internally

When you hear the term "three-tiered", you might immediately think of an application that is
compiled in various COM components that talk to some back-end server (possibly on a
network) to retrieve data and a number of different interfaces to interact with the user. COM,
ADO (or ODBC) and MTS (Microsoft Transaction Server) are the key technologies that make

Section 2 Chapter 9: Three-Tiered Development 273

these scenarios work. Most of these things seem strange and unnatural to Visual FoxPro
developers who are used to a straightforward way of making things happen.

However, this is only one of the possible scenarios. Another approach is to stick to Visual
FoxPro (or any other environment) and compile all the tiers into one EXE. The main advantage
of three-tiered development is the flexibility and ease of maintenance you gain. The fact that
you have to recompile your application in order to switch components, interfaces or data
sources isn't usually a big problem. After all, compiling takes only a couple of minutes, even
for large projects. The fact that you can change interfaces or data sources in a matter of
minutes, on the other hand, weighs heavily.

| often reuse a certain framework for my consulting customers. This framework follows a
strict three-tiered approach. When I initially designed the framework, nobody was interested in
this kind of architecture (not the FoxPro or Visual Studio world, anyway). Important
technologies such as ADO and MTS weren't even planned at that time. For this reason, |
designed my three-tiered application using only Visual FoxPro technology. In other words, this
application was a monolithic Visual FoxPro application, yet it was strictly three-tiered.

Over time, as new technologies emerged, | enhanced my framework. Now | can use it to
create COM components that are called from Visual Basic or Active Server Pages as well.
However, | often use the old approach simply because the majority of applications still run in a
regular Windows network environment and scalability is not a major issue. (Visual FoxPro still
is pretty fast at handling data (whether it is FoxPro tables or SQL Server databases.)

Let me introduce some basic ideas behind my framework.

One of the main design goals was to use different data sources without changing any of the
business logic or interface components. Another requirement was to use different interfaces (at
this point, mainly Windows and plain HTML interfaces). On top of that, | wanted to be able to
switch the business logic layer, mainly to make sure | could handle multi-lingual and (more
importantly) multi-cultural issues as well as adjustments to serve different branches of the
targeted businesses. This requirement was relatively trivial, yet most three-tiered applications
don't handle that very well. Usually only the interface and the data source can be switched, but
the logic remains the same. (I guess by now you get the idea that | don't particularly like this
approach.)

Handling the data

In order to handle the data generically, | use controller objects. (This term wasn't chosen very
wisely. "Model" or "DataService" would have been more appropriate.) An abstract controller
defines the object interfaces, and there are subclasses for each of the data back ends | want to
talk to. Originally, the framework was designed to handle Visual FoxPro and SQL Server data.
Now it handles Oracle as well as ADO.

To get to data, you can use the controller's query methods, which can create regular Visual
FoxPro cursors as well as objectified data (see below). The way | talk to the controllers never
changes. The controller serves as a translator between my attempts to retrieve data and the
language spoken by each specific back end.

It might surprise you that the controller objects are part of the back end (data layer).
Typically, the data back end simply is a collection of data in a standardized format such as SQL
Server, FoxPro tables or XML. However, there is no reason why you couldn't create objects
that belong to the data layer. Many of today's products such as SQL Server and ADO represent

274 Advanced Object Oriented Programming with Visual FoxPro 6.0

the object part of the data layer. My controller objects simply add another layer of abstraction
to this scenario, thus making it more generic.

When Microsoft first released ADO, | was concerned that the additional layer | built would
be redundant, but this concern proved wrong. Today, | still talk to SQL Server directly using
SQL Pass Through (mainly for performance reasons) and not ADO. | also use XML data
sources directly (using the ActiveX control provided by Microsoft). And what if | use plain
Visual FoxPro data? Should | retrieve that through ADO? | don't think so! So far | have been
satisfied with this additional layer, and | would redesign it in the same manner without
hesitation.

Creating the interface

In most three-tiered applications, the interface is the driving force that invokes business logic,
which then retrieves the data. However, this is limiting because the interface decides what kind
of business logic to invoke, which automatically defines what data to use. This would be fine in
scenarios where my main concern is reusing components in different interfaces or applications,
but as mentioned above, not only do | want to reuse middle-tier components (business logic), |
also want to be able to exchange these components in a flexible manner. If | were to use the
interface to invoke those objects, | would need to change every interface after | introduced new
middle-tier classes.

This scenario didn't work for me, so | created special objects that are responsible for
launching the interface. These objects are my "UserService" objects. Again, | have an abstract
user service object that | subclass into a user service object for every interface | want to
support. Initially, the interface would be either a regular Visual FoxPro Windows interface or
an HTML-based approach. By now I've enhanced this so any kind of COM component can
require interface operations.

The user service object provides a number of standard operations, such as loading some
data for editing (single items) or displaying a list. Any user service object can be decorated, so
it talks to a controller to retrieve the correct data. Depending on whether I'm using a regular
Windows interface or another component, the user service either launches a form or creates
HTML that will eventually travel across the wire. Launching a form is trivial. Creating HTML
pages is somewhat more complex. Basically, the HTML user service object requests data,
merges it into HTML templates and sends it out. Initially, the system was designed to work
with the West Wind WebConnection (www.west-wind.com) and Visual WebBuilder
(www.visual-webbuilder.com). Now I've enhanced it so it can serve as a COM component
that's called from Active Server Pages or any kind of other COM client that can handle HTML.
Once the user modifies the data, the request hits the Web server again and the user service
object gets involved. The user service collects all the data in the page, reassembles regular
Visual FoxPro data, and hands it back to the rest of the application—which doesn't even know
what kind of interface was utilized.

Both the regular VFP user service and the HTML user service actively create a user
interface. In the case of an HTML interface, additional rules are attached in order to reduce
traffic. In the case of a Visual FoxPro user service, the interface directly calls the business logic
layer to validate and handle data. The HTML user service does this as well, but only when the
user submits data. This is the final and most important data validation step. All validation that
is done right in the Web page (using scripts) is very basic and doesn't cover complex business

Section 2 Chapter 9: Three-Tiered Development 275

rules. That's fine. The main purpose here is to eliminate stupid problems such as submitting an
empty form. Whether the data that has been submitted actually makes sense is hardly ever
validated in the page itself. This helps to reduce the number of hits and total traffic.

In the case of the COM user service, things work slightly differently. This user service
doesn't create an interface, but it does create a composite object that contains all data to be used
in the interface, and it has some very basic business rules that are implemented through access
and assign methods. This object is then sent through COM channels, and it's the responsibility
of the client to create the actual interface. This way, | can use any COM client (such as Visual
Basic) to provide the interface.

The user service objects are configured at compile time. | have a couple of compiler
directives (#DEFINE) that specify what kind of user service object | want to use. The user
service objects don't get to decide what kind of controller or logic object will get involved. To
load customer data, for instance, the user service object would simply invoke the customer
controller. Whether this controller is subclassed from the VFP controller class, the ADO
controller class, or any other controller, is defined elsewhere (see below). The same is true for
the business logic. The user interface would simply invoke a "tax-calculation object.” The class
this object is made of depends on a number of settings, such as the country the application is
used in, or the country/state you are dealing with. These things can be configured at compile
time as well as during runtime, depending on the kind of business logic you need to invoke (see
below).

Invoking the business logic

Creating the business logic layer isn't quite as straightforward as creating the other two layers.
The business logic layer is responsible for getting data from the data layer, presenting it to the
interface, receiving edits, validating them against business rules, and then sending the results
back to the data layer.

Creating abstract parent classes is difficult because you'll encounter various different
needs. You could create an abstract logic base class that had a number of standard methods, but
you would soon discover that those methods would hardly ever match your needs. And that's
fine. After all, the business logic is what programming is all about. Our target must be to reduce
the effort it takes to resolve technical issues, but the business logic often will be coded
individually.

However, polymorphism will be important within certain kinds of business logic objects.
You should create an abstract class for all your tax-calculation objects, for instance. This will
allow you to exchange different objects without changing the rest of your system. Another
typical example would be an object that validates whether addresses were entered correctly.
Depending on the country you are in, different rules will apply, so you should create different
classes for each country, all subclassed of one abstract parent class to keep the interface
persistent. However, it isn't that important for the tax-calculation and the address-verification
objects to share the same interface. What are the chances you will rip out the "U.S. tax-
calculation" object from your invoicing module and replace it with the "European-address-
verification" object? Not very high, | would say, unless you want to check whether the invoice
total coincidentally is a valid ZIP code, or something like that.

This leaves us with the dilemma of not having a clear approach to invoking the business
logic. For this reason | decided to introduce yet another set of abstract classes that are used to

276 Advanced Object Oriented Programming with Visual FoxPro 6.0

create instances of business logic. All they do is return object references to the business logic
object that's appropriate for the current use. There would be one of those objects for each of the
logic objects | have. For instance, a tax-calculation business service object would have a
GetHandle() method that retrieves or creates a reference to a business logic object and returns
it. From this point on, | would directly talk to the business logic object rather than the business
service object.

The way the business service object decides what logic object to invoke varies greatly. In
the tax-calculation scenario, many decisions might be made at runtime. Depending on where
the customer is located, different objects will be invoked. However, there might also be some
configurations that happen at compile time. When | create a U.S. version, an entirely different
set of logic objects will be compiled into the product than when | create a European version.
After all, when shipping something from the U.S. to Germany, the tax will be calculated
differently than when shipping from Austria to Germany, even though the destination country is
the same.

Compiling one EXE

By now you know the ideas behind the three tiers, but you have yet to explore how the entire
application is compiled. In many scenarios, the user interface is the part that contains or
invokes the rest of the application. As mentioned above, | don't like this approach. | like to use
an object that works as a launch pad and coordinator for all other tiers. This is my application
object. It asks the user service object to provide a starting point (the main window, or the home
page) and it is used to define application-global settings such as what objects are to be utilized.
This removes a lot of responsibility from the interface layer. Note that this object doesn't have a
lot of code. It would not handle the instantiation of interface objects, for example, but it would
have a property (or something similar) that would tell us whether the current interface is
Windows-based or Web-based.

Displaying and manipulating data

One of the most difficult parts of three-tiered development is transferring data from the back
end to the interface. It's easy to run a query in the data service object (controller), but how do
you get that cursor into a form's data session? Well, there are a number of different approaches.
| like to use objectified data. In other words, | create a data object representing a record (or
many data objects representing a record set). The objects have only properties, and each
property represents a field in a table. The objects are created by the controller and handed over
to all kinds of interface components. The user service object is responsible for handing the
object to a form, merging the object into an HTML template, or creating a composite object if a
COM client makes a request. This approach works fine for single records or small record sets
(up to a couple of hundred records). However, it doesn't work very well for large data sets. In
this case, performance won't be all that great, and resources will run out quickly. Also, Visual
FoxPro grids cannot use these kinds of record sets as the data source.

Another approach is to use the controller objects to create regular Visual FoxPro cursors in
the data session of a certain form (or other interface component). To do so, the controller has to
switch data sessions before a cursor is created and before data has to be saved. In this case, you
need to be very careful resetting the data session. If the controller fails to restore initial settings,

Section 2 Chapter 9: Three-Tiered Development 277

the entire application is likely to get confused and to malfunction. Data objects are a much safer
approach, so | try to stay away from the "session hopper" scenario wherever possible.

As a general tip, | recommend not using grids for data entry. Interfaces that use grids are
very hard to implement in other interfaces such as HTML. | use grids almost exclusively for
display purposes.

Class and inheritance hierarchies

You've probably heard it a hundred times by now: "Never use the Visual FoxPro base classes!
Create your own set of classes, put them in a library called Base.vcx and base all your other
classes and controls on this set."

This is still true in three-tiered applications, but you shouldn't use this approach in all tiers.
If you want to stick to this approach, keep separate sets of base classes for each tier. In other
words, create the libraries "user service base.vcx", "data service base.vcx" and "business logic
base.vcx". Make sure you never base classes in different tiers on base classes belonging to
another tier. This will tie the tiers together, which moves you closer to single-tiered
development again.

Obviously not all base classes are required in each tier. Most of Visual FoxPro's base
classes are interface related. You don't need those classes anywhere but in the "user service
base.vex". Typically, the middle-tier and the back-end classes are all baSadtom
Sometimes you might see classes such as "line" or "separator,” because those classes are
resource-friendly (unlike the heaBGustomclass). However, those classes never become
visible.

In Visual FoxPro, every class must be based on a Visual FoxPro base class. You cannot
start from scratch. However, this is what most people mean to do when creating middle-tier or
back-end objects. So let's just assume for a minute that we could start out with a brand-new
class. We would create abstract classes, create concrete subclasses, and so forth. We would
have many different inheritance trees starting from scratch. We would have a tax-calculation
tree, we would have an address-verification tree, and so forth. What do those trees have in
common? Nothing! They all are independent classes. Now let's go back to the real Visual
FoxPro world, where we can't start from scratch but have to base everythingGursthen
base class instead. What would those trees have in common, other than the fact that Visual
FoxPro forced them to use an unnecessary parent class? Not a bit more than the classes in the
example above! So does it make sense to create a set of base classes for the logic layer and the
back end? | doubt it. In fact, it will make it harder to reuse those components because they
always rely on some parent classes that you have to drag over into other projects. These
projects might use their own set of base classes for the middle and back-end tiers. You can now
redefine your classes (making it impossible to reuse updated versions of that class) so they use
the new set of base classes, or you can maintain multiple sets of base classes, which would
defeat the purpose of the concept altogether. And then again, what would be the benefit in this
situation? | don't know. So | recommend creating your own set of base classes for the interface
tier only.

Exposed tiers
Let's return to the scenario of three-tiered development using COM components. In this case,
you would design your application in a similar fashion as described above. In some regards, it's

278 Advanced Object Oriented Programming with Visual FoxPro 6.0

even simpler to create COM components than an EXE. You aren't in danger of breaking the
rules of three-tiered development, because you simply can't. Reusing components is much
easier because you don't have to worry about dependencies. Creating clean class hierarchies is
also easier because you're dealing with various projects, which reduces the risk of creating
unwanted relationships. Creating good object interfaces comes quite naturally, because there is
no way to talk to a COM component other than through its interface. You aren't in danger of
cheating (which might happen unknowingly, but with the same complications nevertheless).

Unfortunately, a number of issues are quite a bit harder to resolve in the world of COM
components than in a regular Visual FoxPro application. How do you display the data, for
instance? Again, single records aren't a problem, because you can always create a data object,
but there is no way to switch into some other component's data session. That's where ADO
comes in. ADO handles all data as objects, which can be passed through COM channels from
the back end through the middle tier into the interface.

The great advantage of COM-based three-tiered applications is language independence.
You can create a data-specific component in Visual FoxPro, another one that does a lot of
calculations in Visual C++, a third one in Visual J++ and yet another one in Visual Basic. Even
though you might not want to do that right away, you always have the option to switch to
different components later on. If you switch to Visual FoxPro from Visual Basic, for instance,
and aren't quite familiar with the environment, you can create a performance-critical data-
retrieval component in Visual FoxPro, and other components that aren't so critical in Visual
Basic (the tool you're familiar with). Later, when the application grows and performance
becomes critical in other parts, you can easily trade single components for faster ones.

COM-based, three-tier applications often run on servers, whether Web servers or just
intranet servers. In these scenarios, one powerful computer does almost all the work. When you
have a large number of users, a large number of hits, or both, you need to make sure your
application scales well. This isn't a trivial task in monolithic Visual FoxPro applications. Visual
FoxPro is fast, no doubt, but once a certain amount of traffic occurs, there isn't much you can
do. There's no intrinsic multithreading, no load balancing, basically nothing you can do other
than coding your own pool manager (good luck!). When your application is based on COM
components, this becomes much easier. You can simply let Microsoft Transaction Server
handle your components, and it will make sure enough resources are available. All you need to
do is register your component, and MTS will manage all calls to it. This includes component
instantiation, which is handled entirely by MTS to ensure there are enough resources and
component instances. Essentially MTS is a very advanced pool manager.

However, there is more to MTS than just scalability. "Transaction" is its middle name,
which indicates that MTS is a transaction manager system as well. In fact, it allows you to span
transactions over multiple components, no matter what language they are written in. In this
case, things don't happen automatically anymore, but you have to design your COM
components specifically for MTS. This isn't rocket science, but it is beyond the scope of this
book. If you are interested in MTS, visit my Web siteviv.eps-software.com) where | keep a
list of recommended reading and a number of MTS articles.

Conclusion
Three-tiered development isn't as difficult as many people would have you believe. The easiest
way to get started is to create a small prototype that handles some dummy data. Try to keep the

Section 2 Chapter 9: Three-Tiered Development 279

data in different databases and create different interfaces, following the rules outlined in this
chapter. Once you are more comfortable with this approach, you can try to create different

logic components that can be swapped (static at first, and dynamic later on). You will soon
realize the advantages of this approach, and | promise you, once you get used to the slightly
different way of doing things (and the handful of complications), you won't want to go back to

the old way. In fact, single-tiered applications now seem like source-code chaos to me. Three-
tiered design helped me to raise the quality of my code tremendously—not only because of the
obvious advantages | laid out in this chapter. Many design questions, such as what classes
should be based on your own set of base classes, will become easy to answer once you take this
well-organized approach.

