
Chapter 2: Project Planning 9

Chapter 2
Project Planning

Framework development is a complex activity requiring thousands of decisions. Taking
the time to formulate your expectations and plan your development efforts is essential to
successfully completing a framework. In this chapter, I’ll highlight the key documents
that will help you organize and plan your framework.

A good project manager uses several tools during the analysis and development stages of any
software development project. A framework is probably the most complicated category of
software to develop; developing a solid implementation plan is critical to successfully
completing your framework.

A good implementation plan is actually a compilation of several documents. These
documents include, but are not limited to, a steering document, requirements list, design plan,
implementation plan, and a test plan.

Thoroughly analyzing your requirements and developing a detailed implementation plan
will highlight areas where flexibility is needed or potential conflicts exist. You may find
requirements that seem to be at odds, yet each seems equally important. Developing a
requirements list takes time. However, identifying these “trouble spots” in the analysis or
design phase is much more productive than after you have spent hours writing code.

In this chapter, you will learn what items go into a implementation plan and how to
prepare one. You will see an explanation of the items contained in the implementation plan. In
addition, you will see a sample of the requirements list, design plan, task list, and test plan used
to develop the MyFrame framework. The sample illustrates the level of detail that you should
strive for when preparing for your own development effort. As you read through the chapters,
you will see that the presentation resembles the Requirement, Design, Plan, and Test paradigm
presented in this chapter.

Steering document
The steering document is the starting point for designing your framework. It consists of a goal
statement, as well as guidelines and objectives, and is the basis for preparing the remainder of
your implementation plan. It should be “high level,” defining the purpose for developing the
framework and some overall attributes about the completed project as a whole.

In this section, I’ll review the steering document used to develop MyFrame. The steering
document contains a goal statement, guidelines for development, and objectives for developing
the framework. The contents of the document are shown in bold text, while comments about
the document are shown in regular text.

The goal statement
The goal statement should capture the reason you are developing your own framework. It
should be singular in purpose and easily understood. Avoid putting too much detail or specific
requirements into the goal statement. Many things will change as you progress through the
development process, but the goal of the framework should not change.

10 Build Your Own Framework with Visual FoxPro

Developing a framework is different than developing an application. When you build an
application, you know that you are building an “accounting application” or a “content
management system.” When you build a framework you don’t know what types of systems will
be built with it.

The goal for the framework should reflect something about the types of applications that
can be built with your framework. Optionally you could describe the level of support your
framework provides for building those types of applications. An example of a goal statement
might be: “To provide the basic templates and tools necessary for creating air traffic control
software.”

Here is the goal statement for MyFrame:
The goal of MyFrame is to provide the necessary components for producing
fully functional client/server or LAN-based applications.

This statement is clear and unlikely to change during the course of development. It
conveys to the developer the types of applications that can be built with this framework and
that the necessary tools to build an application are included as part of the framework.

Guidelines
Guidelines are evaluative statements about the framework as a whole. They reflect how the
framework is constructed, or how it is to be used. Ultimately, the success of a framework
depends on how it is perceived. When preparing your guidelines, think of the characteristics
you would want in a framework if you were going to purchase one.

The following guidelines for MyFrame are presented in bold text. Additional explanations
included as part of the book are in plain text.

 Developer Friendly
Information should be conveyed to the developer about the how the
MyFrame framework works and where to place application code.

A framework is effectively useless without documentation or guidelines for how to use it.
Introduce the developer to your framework with an overview of the framework’s structure and
some examples of how to use the framework. If you are building a framework for your own
use, sketching out these documents or examples will help to further clarify many of your design
decisions and development tasks.

Once a developer begins working with the framework, builders or wizards can be used to
help with the learning process. Builders and wizards help in a number of ways. First, they
inform the developer about the types of information required to make a class or group of
classes functional. Additionally, they can validate the developer’s selections (or prevent them
from making incorrect entries), which can reduce the overall “frustration factor” associated
with learning a new framework.

ASSERTS can be used to inform the developer when the expected conditions for a
program are not satisfied. In addition to suspending execution (when SET ASSERTS is ON),
the message in an ASSERT can be used to explain why a particular piece of information is
required.

One of the key roles fulfilled by a framework is that the complexity or redundancy of
application development is hidden from the end developer. As a framework developer, you
provide the application infrastructure. You should provide developers with ways to customize

Chapter 2: Project Planning 11

and utilize your infrastructure. Make sure the areas where the developers are to place code are
clearly identifiable. Strive for a “fill-in-the-blanks” or “connect-the-dots” approach.

These are just some of the ways to make your framework developer friendly. Remember
that this is a guideline. As you develop your framework you’ll be in a better position to assess
how a piece of code or a feature can be made developer friendly.

 Consistent
MyFrame should be constructed in an orderly and organized fashion.

Developers should expect to find similar problems handled in similar ways, even if that
developer is you. Identify when you choose not to follow standards, and why. Developers
should not have to remember the exceptions to your rules. For example, if you decide to
provide a SetCaption() method for all your forms, adhere to that. Don’t set the caption directly
with code in some places and use SetCaption() in others.

Maintaining consistency throughout the framework is essential to ensure that the developer
does not get frustrated with it.

 Reusable (Single Point Accountability)
The framework functionality in MyFrame should be implemented once.
Once implemented, the implementation should be used wherever that
functionality is required.

This guideline is similar to the consistency principle.
One of the biggest benefits attributed to object orientation is that it facilitates code reuse.

The promotion generally goes something like, “Once you program that pesky function, you’ll
never have to code it again.” True. The bigger benefit, in my opinion, occurs when requests are
made for changes. Knowing where to make the change, and having the change automatically
ripple through the entire application, is a powerful feature for users of your framework.

 Flexible and Configurable
The developer must be able to extend the classes and functionality
provided in MyFrame.

You cannot create a framework that will handle every need of every developer. Instead,
you should consider where flexibility may be required and give the developer a way to extend
the framework to meet his or her own needs.

There are several means to provide flexibility. The most obvious may be to provide a
property that can be set to alter the behavior of a class. For example, you can instruct a form to
act as a modal form by changing the WindowType property. However, as you’ll see later, many
other alternatives exist.

With flexibility comes complexity, which can be a major deterrence to reuse. When simple
tasks seem to take an inordinate amount of effort or require the configuration of many different
components, the tendency is to avoid using those components. If the framework is considered
overly complex, developers will feel frustrated.

Always consider flexibility from two perspectives: yours as the developer of the
framework, and the developers who will use your framework. It is entirely appropriate, and
likely, that you will write complex code in order to make the job of subsequent developers
simpler.

12 Build Your Own Framework with Visual FoxPro

In no case, however, does flexibility mean that you explain how a developer can modify
your framework by altering framework code. Instead, you want to provide alternatives and
hooks to extend the classes you provide.

 Reduce Application Development Time
MyFrame should reduce the effort required to produce a quality application.

Be careful not to micromanage this guideline. Sure, if a form takes 100 percent longer to
produce, you may want to rework its structure. Conversely, if using special tags for varying
types of comments requires 5 percent more time, but returns 500 percent during the project
documentation phase, developers will most likely see this as a positive use of their time.

Objectives
Objectives are high-level requirements for the framework. The term “high level” implies that
you cannot map an objective to one element in the framework. Instead, objectives permeate the
entire framework.

Be careful not to confuse objectives with requirements. Having the ability to work with
arrays is not an objective of the framework. It may be a requirement of the framework, but it is
certainly not an objective. You are not building an entire application framework so that you can
work with arrays.

State the objectives in a way that does not define how the objective is achieved. For
example, the first objective is that the framework must work with multiple sources of data. It
does not state:

“The framework should contain one class that is mapped to a particular type of data.
This class will serve as the interface between each type of data. A new class will be
created for each new source of data.”

This explanation is actually a design decision (and the way that multiple data sources are
handled in MyFrame). Working with multiple data types affects much more than one individual
class; it affects how you navigate between records, how you write data validation code, and a
host of other issues, as you will see throughout the remainder of the book.

The following objectives for MyFrame are presented in bold text. Additional explanations
included as part of the book are in plain text.

 Multiple Data Sources
The system must have the ability to work with multiple sources of data.

Data is not limited to DBF files only. Application data can exist in remote databases
accessible via ODBC, Web Services, Microsoft Outlook, or a variety of other sources.

What does it mean to be able to work with multiple sources of data? Does it mean that a
single form can write to data in a SQL Server database as well as a FoxPro table? Can contact
information stored in a FoxPro table be connected to Outlook appointments? Can a form
originally written using a FoxPro table be switched to SQL Server without having to redevelop
the form?

To me, working with multiple data types means all these things. This is not to say that the
framework will accomplish all these things “automatically.” It means that the tools are
provided to accomplish these things. If the application developer is willing to change the way
he or she thinks about designing an application, these questions can be answered affirmatively.

Chapter 2: Project Planning 13

Multiple projects
I am always working on several projects at the same time, and each project is at various stages
of completion. Although my framework doesn’t change much anymore, when I do make a
change it is usually something that would be beneficial to all projects in development.

There is nothing more frustrating than working on several projects at once and having to
add new features to each project individually. One key principle of inheritance is that that you
should only have to make code changes in one place. Having multiple copies of the same files
on disk just violates this basic concept.

The term “project” here refers to each application being developed. Do not confuse the
term “project” with the term “project manager.” A project manager is (in FoxPro) a tool that
organizes the files in your project and facilitates the compilation and distribution process.

 Modular Construction
Whenever possible, MyFrame should be constructed in modular fashion.

Modular construction means that your framework and resulting systems are structured in
logical pieces. Much of framework construction is the integration of components. However,
once they’re integrated, modifying one or more framework modules can change the behavior of
the entire application.

 FoxPro Designers
The MyFrame framework should work within the FoxPro Design Tools.

The objectives stated to this point are ones that you will most likely use as the basis for your
own framework. Working within the FoxPro designers is a stated objective of the MyFrame
framework for the following reasons:

 Developers are familiar with the FoxPro interface.

 The FoxPro interface has been user tested.

 The FoxPro interface is supported by the FoxPro documentation.

This is not to say that your framework must work exclusively with the FoxPro designers.
In fact, many frameworks come with tools that either overcome the limitations of the FoxPro
designers, or that support their specific design philosophy, or both.

 Portable
The MyFrame framework and framework files should start in any directory.

I use the phrase “start in any directory” to indicate that whether the framework is loaded
on your D:\ drive, or C:\drive, or any other directory, it should work without fail.

Implementation plan
There are no hard and fast rules as to what belongs in an implementation plan. In my
experience, the most helpful project implementation plans include a detailed listing of
framework requirements, design guidelines to direct the development process, a task list
detailing specific development activities, and a test plan to assess the success of the project.

14 Build Your Own Framework with Visual FoxPro

Each element of the implementation plan may be developed independently. In practice,
however, the development of a comprehensive implementation plan is an iterative process. In
this section, I will explain the type of things that go into each section and provide samples of
the implementation plan for MyFrame.

Requirements list
The requirements section contains a detailed listing of features and capabilities the framework
must have. Requirements are quantifiable. They can be measured. At the end of the day, either
a requirement is satisfied, or it isn’t.

State requirements clearly and in a quantifiable manner. Precisely defining your
requirements reduces the chance for misinterpretations. Stating requirements in a manner that
can be measured further reinforces the requirement and assists when developing a test plan.

Design (implementation)
The requirements list will probably resemble a “laundry list” of items to be included in the
framework. Taken in isolation, each requirement could (possibly) be implemented in a variety
of ways. For example, one requirement may be that users must be able to sort a particular result
set. In isolation, that could mean that the result set could be sorted in memory using an array or
persisted by storing the result set in a table.

In the design section of the implementation plan, you categorize one or more requirements
and define a cohesive development strategy to satisfy those requirements.

Once you’ve completed your design, check the solution against the guidelines and
objectives for the project. Ask yourself, “Does my design violate any of the objectives or
requirements of the framework?”

Consider the following guideline and requirement:

 Guideline: The framework should be user friendly.

 Requirement: Each action taken in the system must be reversible or confirmed prior to
taking the action.

A system that asks a user, “Are you sure you want to log on to the system?” after he enters
his user name and password and clicks a Logon button, satisfies the requirement but probably
fails the “user friendly” test. The user took the time to provide a user name and password, and
click the Logon button, so it’s safe to assume the user wanted to log on to the system. The
additional confirmation is an extra step that the user may consider “unfriendly.”

Task list
This is a list of the specific development actions to be taken to construct the framework. Your
requirements list and design guidelines are the basis for the items appearing in your task list.

Test plan
The test plan is a list of tests that, when run successfully, ensure that your framework is
satisfying its design specifications.

Chapter 2: Project Planning 15

Sample (excerpt)
This section contains an excerpt taken from the MyFrame implementation plan. The level of
detail in your implementation plan will vary. A rule of thumb might be that the more people
working on the project, the greater level of detail is required—especially if you are working on
a large project where several different classes and modules have to integrate with each other.

The familiarity of your developers with the project at hand is also a factor in how detailed
each item might be. The more familiar, the less detail and more “bullet-like” your
implementation plan will be.

Finally, development standards will also limit the level of detail required in your
implementation plan. For example, if a development step is labeled “Develop customer
maintenance screen” and your development standards dictate that all maintenance screens must
have Save and Cancel buttons, it is unnecessary to repeat these items for every maintenance
screen in your system.

The following excerpt is related to creating the startup routine. It assumes you are familiar
with application development and is presented in a terse bullet format. If you are unfamiliar
with any of the items presented in the example, relax … a full explanation of each item is
presented in Chapter 5, “Beginning Development.”

REQUIREMENTS

 One file starts all applications.

 Starting the application also “starts” the framework.

 Use relative paths only.

 Start of application configures environment.

 Close of application restores environment.

DESIGN
One of the overall objectives for the project is to support multiple project development. One
class serves as the “control” for starting and shutting down an application. This class is then
subclassed as each new project is started.

A single file is required as the “main” file for each project. One program will be created to
start each project. The stub program will contain the code for setting the default directory and
search paths.

As a matter of preference, I like keeping the code for starting the application (Main.prg)
close to the code responsible for handling all the activities as the program is started and closed.
Therefore, the application class is created as a PRG class.

One program file is required to store the framework application object definition
(Main_frame.prg) and another is required to store the application object and starting code for
each application (Main.prg).

Task Plan

 Create a file for the framework class definition
(.\MyFrame\FrameSource\Main_Frame.prg).

16 Build Your Own Framework with Visual FoxPro

 Create the application class.

 Define the startup sequence for the application class.

 Define the shutdown sequence for the application.

 Create a file for the Application Class Definition.

 Add startup code responsible for setting default and search paths.

 Create the application-specific application class definition.

Test Plan
Test of startup and shutdown sequence
 Non-compiled
 Check path
 Load framework
 (Path should now be set to the project’s root directory)
 (Environment settings: Set to application-specific settings)
 Release framework
 (Old path is restored)
 (Original environment settings are restored)

Conventions
The first thing I do when I get a new piece of software is look through the menu and start
poking. I expect the menu to be organized and indicative of the types of things the software can
do. Assuming the software is reasonably organized, I know it won’t take long to figure out how
to use it, even before reading the documentation. I expect that you don’t need to be persuaded
about the importance of presenting an orderly and consistent user interface to the end user.

When building a framework, the application developer is your end user, and he or she
expects the same degree of consistency in the interface: your code. Adhering to the following
conventions is one way to ensure consistency.

Write clear, readable code. Application developers will read your code to gain
understanding and insight into how they can better use your framework. Provide meaningful
comments that explain what is happening and why. Avoid commenting on syntax; instead,
focus on the objectives and why an action was taken, not just what the action was. Read
through your code a few days after completing it. Are the variables named appropriately? Is the
intent of the code clear from the comments provided or from the code itself?

This section focuses on the conventions you should consider for your framework, followed
by a systematic approach to organizing the framework files.

Conventions are a set of rules describing how to format your code. For example:

 Indent case statements three spaces.

 Use CamelCase notation.

Follow the conventions recommended by Microsoft in the Visual FoxPro Help file. Most
developers are familiar with or are already using these conventions. The conventions you

Chapter 2: Project Planning 17

choose to follow when developing the framework can be as loose, or as stringent, as you feel
comfortable with. Establish a set of conventions for your code and follow it. You may add to or
take away from the conventions as you see fit. Remember, one of your objectives is to make
the development process smoother. Try not to make the conventions too restrictive or
complicated. And finally, conventions are optional. Never impose conventions on the
application developer.

Comments
Every piece of code should clearly state its intention. I have read somewhere that each piece of
code should be documented in such a way that, if the code were removed, the reader would still
understand its purpose. Taken in moderation, this is a good principle to follow. However, the
best-case scenario is when the code is self-documenting. For an example of self-documenting
code, see the LoadApp() method in Chapter 5, “Beginning Development,” under the section
titled “aApplication.”

Place the comments in appropriate places. Consider a method named PrintSalaryHistory().
How PrintSalaryHistory() retrieves and calculates information is irrelevant to the calling
program. Comments for PrintSalaryHistory() are better placed directly in the
PrintSalaryHistory() method. On the other hand, if a precondition exists it would be better to
state as much in both the calling method and the called method. An example of a precondition
might be “Prior to calling PrintSalaryHistory(), the employee table must be open, selected, and
on the record of the employee you wish to print.”

Preconditions that must be explained in more than one place may be
an indication that coupling between classes or methods exists.

 Be careful not to over-comment. It is difficult enough to trace through code without
having to read every thought a developer had while he or she assembled the code. The
following is an example of over-commenting:

*-- The customers table is not opened when the form loads.
*-- It is only opened if the user tries to search for a customer.
*-- Since this form is one of the few forms where a private data session is
*-- not used and the customers table was not opened from the data environment,
*-- it is sometimes left open.
*-- Even though the table is opened in shared mode, and causes no problems if
*-- it remains open, it's cleaner to make sure it is closed.
*-- By the way, this next line of code I found in the FoxPro Advisor's tips
*-- section. Boy, it sure seems easier. I used to close tables like this:
*-- IF USED("TableName")
*-- USE IN "TableName"
*-- ENDIF
*-- Now I close them like this:
USE IN SELECT ("Customers")

Instead try:

*-- Cleanup
USE IN SELECT ("Customers")

18 Build Your Own Framework with Visual FoxPro

The same is true of code that has been extensively modified over time. Obtaining a clear
understanding of what code achieves is often muddied by comments about what the code used
to achieve. Keep the comments in your code related to the code in effect. Place modification
histories at the beginning or end of each code block; then, if the modification is of interest, the
information is still readily available.

Comment blocks of code rather than individual lines. I use the term “block of code” to
indicate functions, programs, or, in the case of classes, the class itself. A class may contain
several methods that, in effect, function to achieve a single goal. Commenting each method is
tedious and is often not as helpful as a single explanation defining the purpose of the class and
role of the more important methods. A technique first introduced by Drew Speedie (a
framework developer) is to include a method in each class named “zReadMe()”. zReadMe()
will always sort toward the bottom of an alphabetically sorted list and is therefore easily found
in the FoxPro designers.

Here’s an example of a comment block in a header:

*===
*| Purpose......A sentence or two describing what the
*| code does.
*@ Author.......The name of the developer
*| Created......The date the program was created
*| About........This is a free-form area provided to expand
*) on the purpose of the code, explain how
*) the code is structured, or any other
*) relevant information.
*| Dependencies: Another free-form area describing
*) conditions expected to be true for the code
*) to work properly. If possible, try stating
*) dependencies as ASSERTions.
*//Mod.List.....A listing of the dates, developer(s) and
*) reasons for the modifications
*===

You may have noticed that various parts of the header are marked with different comment
strings. FoxPro 8.0 introduces a new tool called Code References, which searches source code
files for a particular string. Using the Code References tool, it would be possible to obtain a list
of all developers that worked on a project by conducting a project-wide search for “*@”. Other
comment tags used in MyFrame are:

 *--Comment tags
 *// Modification
 *ToDo:
 *-? Question:
 *) Continuation of any comment
 *--
 NOTE:
 &&

Names (general)
When naming something, try to make the name meaningful in the context for which the name
will be used. UpdateTableBuffer() is an appropriate name for a method on a data class.
However, Save() might be a better name for a similar method on a form. Using descriptive

Chapter 2: Project Planning 19

names for variables and methods helps to keep the code readable. IntelliSense, first introduced
in FoxPro 7.0, dramatically reduces the “pain in the butt” factor associated with using long
names.

Names (formatting)
Most FoxPro developers expect to see names in CamelCase, where the first letter of each word
in a name is capitalized. Using CamelCase makes it easier to read names comprised of more
than one word. Several examples have been used already in this chapter, including
PrintSalaryHistory() and UpdateTableBuffer().

In some circumstances, a prefix is added to the name to convey additional information
about the item. For instance, variables are often prefixed with two letters, the first indicating
the scope of the variable and the second indicating the data type of the variable. Therefore,
lcDescription would indicate that the variable “Description” was local in scope and of type
character.

Most FoxPro developers are familiar with or are already using the prefixes listed in the
Visual FoxPro Help file. These prefixes are listed in the following tables.

Table 1. Prefixes indicating scope.

Scope Description Example
l Local lnCounter
p Private (default) pnStatus
g Public (global) gnOldRecno
t Parameter tnRecNo

Table 2. Prefixes indicating variable types.

Type Description Example
a Array aMonths
c Character cLastName
y Currency yCurrentValue
d Date dBirthDay
t Datetime tLastModified
b Double bValue
f Float fInterest
l Logical lFlag
n Numeric nCounter
o Object oEmployee
u Unknown uReturnValue

20 Build Your Own Framework with Visual FoxPro

Table 3. Prefixes indicating class.

Prefix Object Example
chk CheckBox chkReadOnly
col Collection colFormObjects
cbo ComboBox cboEnglish
cmd CommandButton cmdCancel
cmg CommandGroup cmgChoices
cnt Container cntMoverList
ctl Control ctlFileList
cad CursorAdapter cadInventory
<user-defined> Custom user-defined
dte DataEnvironment dteSalesForm
edt EditBox edtTextArea
frm Form frmFileOpen
frs FormSet frsDataEntry
grd Grid grdPrices
grc Column grcCurrentPrice
grh Header grhTotalInventory
hpl HyperLink hplHomeURL
img Image imgIcon
lbl Label lblHelpMessage
lin Line linVertical
lst ListBox lstPolicyCodes
olb OLEBoundControl olbObject1
ole OLE oleObject1
opt OptionButton optFrench
opg OptionGroup opgType
pag Page pagDataUpdate
pgf PageFrame pgfLeft
prj ProjectHook prjBuildAll
sep Separator sepToolSection1
shp Shape shpCircle
spn Spinner spnValues
txt TextBox txtGetText
tmr Timer tmrAlarm
tbr ToolBar tbrEditReport
xad XMLAdapter xadRemoteXMLData
xfd XMLField xfdPrices
xtb XMLTable xtbInventory

Chapter 2: Project Planning 21

Variables
Variables begin with a two-letter prefix. The first letter indicates the scope of the variable. The
second variable indicates the type. The name is in CamelCase.

Properties
Property names are prefixed with the “type” of information intended to be stored in the
property. The name follows the CamelCase convention; for example: oApp.cAppName.

Functions
Function names are in CamelCase.

Tables
Avoid using long names for tables or including spaces in the name. Yes, FoxPro supports long
table names and spaces, but some other databases do not. Some of the functionality you
provide in the framework will rely on persisted data stored in tables. Don’t set yourself up for
disaster. Using short names will prevent problems when porting to another database.

Another convention followed in MyFrame is to name the tables in the plural form and to
provide one surrogate primary key for each table. An example of table names would be
“Contacts” or “Invoices.” The primary key is stated in the singular form such as ContactID or
InvoiceID.

Fields
Avoid using long field names for the same reasons outlined when naming tables. Additionally,
many FoxPro programmers prefix the name of each field in their tables with the field’s type.
Avoid that convention when naming fields. Many FoxPro data types are not comparable to data
types in other database products. Using a prefix to indicate the field’s type offers little benefit
because the type is easily determined and probably won’t convert well to another database
product.

Methods
As a framework developer you’ll use methods for two reasons. The first reason is to
accomplish work. The second is to provide a place for the application developers to do work.
I’ll discuss this topic in much more depth throughout the book. Here’s the important point
while discussing conventions: There is a difference in how methods are used, and they each
have their own conventions.

 Use CamelCase when naming methods where you do the work.

 When providing methods for application developers, do not expect them to be
clairvoyant. Consistently inform them, “This is where the code goes.” Prefix all
methods that are specifically provided for future developers with “On” or “Is.” Prefix
methods provided to return information with “Get.” Use CamelCase for the remainder
of the method name.

For example, “IsValid()” would indicate where a developer could place some
validation code. “OnSave()” would indicate a place where a developer could take
action during a save. “GetEmployeeListing()” would indicate a method where

22 Build Your Own Framework with Visual FoxPro

information was being returned. Developer hooks beginning with “Is” or “On” must
return logical values (Boolean for purists). The “Get” methods return data.

I’ll discuss data formats in Chapter 8, “Data Access.”

Class definitions
Each class serves a purpose in the framework. For example, the “Cursor” class provides
services that are useful for working with FoxPro cursors. The class name reflects what the class
does.

In some cases, the class will be an abstract class serving only to define the interface for
subclasses. Abstract classes are prefixed with an “a.” Alternately, fully defined classes that are
ready for use are prefixed with “my.”

Each application created with the MyFrame framework does not use the MyFrame classes
directly. Instead, each class is subclassed at the start of a new application. These classes are
application-specific and are (optionally) prefixed with one to three letters specified by the
application developer. To remain consistent throughout the book, all application classes will
begin with “smp,” which is short for “sample application.”

I’ll cover much more about the roles classes play in Chapter 6, “Creating
a Class Library.” A full discussion of how classes are created at the start
of each application is discussed in Chapter 18, “Starting New Projects.”

Classes as form properties
When classes are used on forms, the class name is prefixed by three letters indicating the class
type. For example, all text boxes are prefixed with “txt,” labels with “lbl,” and so on.

Summary
This chapter illustrated how to create a goal statement that defines the purpose for building
your framework, as well as development guidelines and objectives to help guide you during the
development cycle.

This chapter also illustrated several documents that will help you during the
implementation of your framework. These documents include, but are not limited to, a
requirements list, design plan, task list, and a test plan.

Finally, this chapter explained the need for adhering to conventions when developing your
framework.

Updates and corrections to this chapter can be found on Hentzenwerke’s Web site,
www.hentzenwerke.com. Click “Catalog” and navigate to the page for this book.

