
Chapter 12: Previewing the Report at Runtime 283

Chapter 12
Previewing the Report

at Runtime
Previewing a report is probably what users do most and Crystal Reports provides
excellent preview capabilities for your application.

As you have seen in previous chapters, the Crystal Reports Report Design Component (RDC)
gives you total control over creating, modifying, printing, and exporting reports in your
application. However, you have not seen how to preview the report.

Beginning with Crystal Reports 9, Crystal Decisions began shipping two versions of the
report viewer. The first is an ActiveX control for COM-based development environments. The
second is a Java Bean control for use in Java. This chapter addresses using the ActiveX
viewer. You will soon see how to control most aspects of using this control and how it
displays. The Viewer Control is also multi-threaded. This means the user can start previewing
the report before all the data loads.

Registering the control
To use an ActiveX control on your Visual FoxPro form, you need to list it on the ActiveX
Form Control toolbar. The following steps walk you through this process.

1. Select Tools | Options from the menu. The Options dialog box displays (see
Figure 1).

2. Select the Controls tab.

3. Select ActiveX controls from the option group.

4. Select Crystal Report Viewer Control 9 from the list. Make sure the box has an X in it.

5. Click Set As Default so Visual FoxPro remembers the setting.

6. Click OK to close the Options dialog box.

284 Crystal Reports Application Development

Figure 1. Select Crystal Report Viewer Control in the Options dialog box to
make it available.

Creating a preview form
With the Crystal Report Viewer Control available to your application, you can create a
preview form. One of the unique features of Visual FoxPro is the ability to subclass an
ActiveX control. This allows you to add functionality to the control and reuse it in other
places. For example, in Chapter 13, “The Report Designer Control,” you see how to use
the Embeddable Report Design Control and use the preview control to build full report
design capabilities.

The following steps walk you through creating the form.

1. Type “CREATE CLASS” in the Command Window. The New Class dialog box
displays (see Figure 2).

Chapter 12: Previewing the Report at Runtime 285

Figure 2. Use the New Class dialog box to define new classes.

2. Enter CRPreview for the Class Name.

3. Select OleControl for Based On.

4. Enter Crystal for the name of the Visual Class Library in the Store In field.

5. Click OK. The Insert Object dialog box displays (see Figure 3).

Figure 3. Use the Insert Object dialog box to select the ActiveX control to subclass.

6. Select Insert Control in the Choose option.

7. Select Crystal Report Viewer Control 9 in the Control Type list, and then click OK.
The Class Designer displays.

286 Crystal Reports Application Development

8. Add two properties to the class. The first, oCrystal holds a reference to the
Application object. The second, oReport, references the report object. The Report
Viewer control uses the RDC automation server for many of its own services such as
printing and exporting.

9. Add a new method called Setup. Call this method to do all the set up needed by the
viewer control when using it on a form.

If you look at the property sheet, you see many properties, events, and methods for the
Viewer Control. It may be tempting to change the properties using the property sheet.
However, this doesn’t work in Visual FoxPro. You need to set the properties in code. Table 1
lists the properties.

Table 1. This table contains the properties of the Viewer Control.

Property Type Read
Only

Description

ActiveViewIndex Numeric Y Gets the index of the current view tab.
DisplayBackgroundEdge Logical N If True, displays the background edge. This

offsets the report from the edge of the control.
DisplayBorder Logical N If True, displays the border of the viewer.
DisplayGroupTree Logical N If True, displays the group tree.
DisplayTabs Logical N If True, displays the tabs for different views.
DisplayToolbar Logical N If True, displays the toolbar.
EnableAnimationCtrl Logical N If True, displays the animation control.
EnableCloseButton Logical N If True, displays the Close button.
EnableDrillDown Logical N If True, enables drill down.
EnableExportButton Logical N If True, displays the export button.
EnableGroupTree Logical N If True, displays the group tree.
EnableHelpButton Logical N If True, displays the help button.
EnableNavigationControls Logical N If True, displays the page navigation controls.
EnablePopupMenu Logical N If True, enables the popup menu.
EnablePrintButton Logical N If True, makes the print button visible.
EnableProgressControl Logical N If True, displays the progress control.
EnableRefreshButton Logical N If True, makes the refresh button visible.
EnableSearchControl Logical N If True, makes the Search button visible and

enables the search feature.
EnableSearchExpertButton Logical N If True, makes the search expert button visible.
EnableStopButton Logical N If True, displays the stop button.
EnableToolbar Logical N If True, the toolbar is functional.
EnableZoomControl Logical N If True, makes the zoom drop down control

visible.
IsBusy Logical Y Returns the busy status of the control.
ReportSource Object N A reference to a report object.
TrackCursorInfo Object Y A reference to the track cursor info object,

discussed later in this chapter.
ViewCount Numeric Y Returns the number of view tabs currently

available.

The only property that needs additional explanation is the TrackCursorInfo property. This
property holds a reference to the TrackCursorInfo object containing information about the

Chapter 12: Previewing the Report at Runtime 287

mouse cursor used for the Viewer control. Using this object, you can get or set the mouse
cursor type. Table 2 lists the properties of the TrackCursorInfo object.

Table 2. This table lists the properties of the TrackCursorInfo object.

Property Type Read
Only

Description

DetailAreaCursor Numeric N Mouse cursor to use for the detail area of the
viewer control. Possible values:

crAppStartingCursor
= 12
crArrowCursor = 1
crCrossCursor = 2
crDefaultCursor = 0
crHelpCursor = 13

crIBeamCursor = 3
crMagnifyCursor =
99
crNoCursor = 10
crWaitCursor = 11

DetailAreaFieldCursor Numeric N Mouse cursor to use for the detail fields of the

viewer control. Values are the same as for the
DetailAreaCursor.

GraphCursor Numeric N Mouse cursor to use for a graph displayed in the
viewer control. Values are the same as for the
DetailAreaCursor.

GroupAreaCursor Numeric N Mouse cursor to use for a group header or footer
in the viewer control. Values are the same as for
the DetailAreaCursor.

GroupAreaFieldCursor Numeric N Mouse cursor to use for a field in a group header
or footer in the viewer control. Values are the
same as for the DetailAreaCursor.

The TrackCursorInfo object does not have any methods or events.

The ReportSource property is the most important property of the Viewer control. You

need to set it to a Report Object before you can use the viewer. Do this in the Setup method of
the subclassed control. Because this control is dropped on a form or another container, and the
control instantiates before the parent container, you can’t use the Init method to accept the
necessary parameters. So, add the following code to the Setup method:

LPARAMETERS tcReport, toReport, toCrystal

WITH This
 IF PARAMETERS() = 1
 * Only the report name was passed in. Create the CR object
 .oCrystal = CREATEOBJECT("CrystalRuntime.Application")
 .oReport = .oCrystal.OpenReport(tcReport)
 ELSE
 * All the parameters were passed in. Use those references to the CR objects
 .oCrystal = toCrystal
 .oReport = toReport
 ENDIF

288 Crystal Reports Application Development

 * Setup the viewer properties
 .ReportSource = .oReport
 .DisplayBorder = .F.
 .DisplayBackgroundEdge = .T.
 .EnableProgressControl = .F.
 .Resize()
 .ViewReport()
ENDWITH

The ViewReport method actually loads the data and displays the report. I explain the
methods of the Viewer control later in this chapter. It is important to call the Resize method so
the control is the same size as the container you drop it on. Here’s the code for the Resize
method:

WITH This
 .Top = 0
 .Left = 0

 IF .Parent.BaseClass = "Page"
 * The viewer is on the page of a page frame.
 * Set the height and width the same as the page
 .Height = .Parent.Parent.PageHeight
 .Width = .Parent.Parent.PageWidth
 ELSE
 * Just use the height and width of the parent
 .Height = .Parent.Height
 .Width = .Parent.Width
 ENDIF
ENDWITH

The control is now ready to use. Close the class designer and save changes to the control.
Now, with a customized version of the Viewer Control, you need to make it available to the
Visual FoxPro form designer.

1. Select Tools | Options from the VFP menu. The Options dialog box displays.

2. Select the Controls page (see Figure 4).

Chapter 12: Previewing the Report at Runtime 289

Figure 4. Make the subclassed Viewer control available to the form designer by
selecting it on the Controls page of the Options dialog box.

3. Select Visual class libraries from the option group.

4. Click Add, select Crystal from the Open dialog box, and then click Open.

5. Back in the Options dialog box, click Set as Default and then OK. This saves
your changes.

Finally, it’s time to create the preview form.

1. Create a new form and call it CrystalPreview. The Form Designer displays.

2. Click View Classes on the Form Controls toolbar and select Crystal from the shortcut
menu. The Forms Controls toolbar changes to reflect the controls available in the
Crystal class library (see Figure 5).

290 Crystal Reports Application Development

Figure 5. Configure the Form Controls toolbar to show the Crystal class library.

3. Click the CRPreview OLE control button on the Form Controls toolbar and drop it
onto the form. The CRPreview control appears as a square. Don’t worry about sizing
the control. Form code handles this.

4. On the Properties sheet, change the name of the control from CRPreview1 to
oleCRPreview.

5. Double-click the form (not the control) and enter the following code into the Init
method of the form:

LPARAMETERS tcReportName
This.oleCRPreview.Setup(tcReportName)

6. Enter the following code in the Resize method of the form. This causes the viewer
control to resize when you resize the form.

This.oleCRPreview.Resize()

7. Close the form and save the changes.

8. Time to test the form. You do this from the Command Window. Substitute the report
name for one you have available. The preview is shown in Figure 6.

DO FORM CrystalPreview WITH “C:\CR\MyReport.RPT”

Chapter 12: Previewing the Report at Runtime 291

Figure 6. Preview of the finished report.

If you are using a data source that requires you to log on, you need to release
the Report object from the Report Viewer before you can log off. This is because
the Report object, not the Viewer Control, holds the data. There are two ways to
release the Report object. First, you assign a new report object to the viewer or
you destroy the viewer object.

There you have it! A Crystal Report viewer for your application. However, there are many
methods and events available on the control. The rest of this chapter discusses them.

Methods of the Viewer Control
The Crystal Reports Viewer Control has several methods you can call to affect the preview.
You call many of the methods from the control’s native toolbar. This gives you the ability to
create your own toolbar for the viewer and still give full functionality to the end user.

Showing the report
The first method you should call is Refresh. This ensures you have current data loaded into the
report before it is shown. The Refresh method has no parameters.

ThisForm.oleViewer.Refresh()

292 Crystal Reports Application Development

The ViewReport method shows the report. This method has no parameters.

ThisForm.oleViewer.ViewReport()

Once the report is visible, you can change the way the report displays. You can do things
such as navigate to a specific page, change the zoom, or drill down to a specific group either
on its own tab (called a view) or in the main preview window. It’s also possible to search for
specific text.

You can also navigate to a relative page in the report. The following method calls show
how to do this. None of the methods take parameters.

ThisForm.oleViewer.ShowFirstPage()
ThisForm.oleViewer.ShowLastPage()
ThisForm.oleViewer.ShowPreviousPage()
ThisForm.oleViewer.ShowNextPage()

You display a specific page with the ShowNthPage method. Here is the syntax:

ShowNthPage(nPage)

nPage Numeric The page number of the page to show.

The Zoom method zooms in or out of the displayed report.

Zoom(nValue)

nValue Numeric The zoom percentage. For example, 400 zooms the report to 400%. You
can also pass 1 to fill the width of the view window or 2 to fit the entire
page in the window.

Print a report with the PrintReport method, which has no parameters. Here is an example:

ThisForm.oleViewer.PrintReport()

Working with groups
Groups are supported in a couple of different ways. You can show a specific group in the
current view or add a new view for a group as a drill down.

The ShowGroup method displays a group in the current view.

ShowGroup(cGroupPath | aGroupPath)

cGroupPath Character A colon separated string containing the path to the group. For example,
USA:Utah:Salt Lake City

aGroupPath Array An array containing the path for the group.

Instead of navigating to a particular group in the current view, you can add a new view

with the AddView method.

Chapter 12: Previewing the Report at Runtime 293

AddView(cGroupPath | aGroupPath)

cGroupPath Character A colon separated string containing the path to the group for the new
view. For example, USA:Utah:Salt Lake City

aGroupPath Array An array containing the path for the new view.

You activate a particular view with the ActivateView method. The parameter is the view

number you want to activate. View one is always the primary view.

ActivateView(nView)

nView Numeric The view number to activate. Each view is a separate tab on the control.

Use CloseView to close a specific view. View one is the Preview itself. If you try to close

it, you get an error.

CloseView(nView)

nVew Numeric The view number to close.

You retrieve the name of the view with the GetViewName method.

GetViewName(cTab)

cTab Character The name of the tab containing the view.

Finally, you get the path to the view with the GetViewPath method. GetViewPath method

returns an array.

GetViewPath([nView])

nView Numeric The view number containing the path.

Retrieving information
The Crystal Reports Viewer has three methods you can use to retrieve specific information.
The first is GetCurrentPageNumber. This method returns the page number displayed in the
current view. It does not have any parameters.

GetCurrentPageNumber()

You locate specific information in a report with the SearchForText method. If the
specified text is found, it is highlighted in the current view. If the text is not found, the
message Search could not find any more instances of the specified text after this page displays.
The search always begins on the current page, searches forward in a report, and is always
specific to the current view. Here’s the syntax:

294 Crystal Reports Application Development

SearchForText(cText)

cText Character The text to search for.

Finally, SearchByFormula allows you to enter a search formula. For example, you can

search for Country = ‘USA’ by using the following formula:

{Customer.Country} = ‘USA’

Here’s the syntax:

SearchByFormula(cFormula)

cFormula Character The formula you want to use for the search.

When you pass an empty string to the SeachbyFormula method, the Viewer control

displays the Search Expert, where you enter your search criteria (see Figure 7).

Figure 7. The Search Expert displays when you pass an empty string to the
SearchbyFormula method.

Events
Events occur when something happens with the application. For example, clicking
a particular field causes the click event to fire. Unlike methods, you don’t pass parameters to
events. Instead, the Crystal Report Viewer Control passes parameters to code you write in
event methods.

In the event method code, you can run any code you want. You can even cause the default
behavior of the event to not occur. All the events have the lDefault parameter. If you set this
parameter to False, the default behavior does not occur.

Chapter 12: Previewing the Report at Runtime 295

Report objects events
Report object events occur when you click or double-click a field, heading, or label in a report.
Doing this creates the EventInfo object. This object contains information about the event and
passes as a parameter to the event method. Table 3 lists the EventInfo object properties.

Table 3. This table shows the properties of the EventInfo object.

Property Type Read
Only

Description

CanDrillDown Logical Y If True, you can drill down on the object.
Index Numeric Y The index of the control in a control array.
ParentIndex Numeric Y Gets a reference to the object’s parent’s index.
Text Character Y The object’s text string.
Type Numeric Y The type of object. Possible values:

crBitMap = 103
crBlob = 104
crBox = 106
crCrosstab = 110
crCrosstabChart =
108
crCrosstabMap =
115
crDatabaseFieldTyp
e = 1
crDetailChart = 109
crDetailMap = 116
crDetailSection =
202
crFormulaFieldType
= 5
crGraphic = 111
crGroupChart = 107
crGroupFooterSectio
n = 201
crGroupHeaderSecti
on = 200
crGroupMap = 114
crGroupNameFieldT
ype = 8

crLine = 105
crOLAPChart = 113
crOLAPCrosstabFiel
dType = 4
crOLAPDataFieldTyp
e = 3
crOLAPDimensionFi
eldType = 2
crOLAPMap = 117
crOLEObject = 101
crOOPSubreport =
112
crPageFooterSection
= 206
crPageHeaderSectio
n = 203
crSpecialVarFieldTy
pe = 7
crSubreport = 102
crSummaryFieldType
= 6
crText = 100
crUnknownFieldDefT
ype = 0

The EventInfo object has a single method, GetFields, which returns a Fields Collection.
GetFields does not have any parameters.

oFields = oEventInfo.GetFields()

The Fields collection holds a collection of field objects and has no methods. Table 4 lists
the properties of this collection.

296 Crystal Reports Application Development

Table 4. This table lists the properties of the Fields collection.

Property Type Read
Only

Description

Count Numeric Y The total number of items in the collection.
Item Numeric Y Index of the item in the collection.
SelectedFieldIndex Numeric Y Index of the item being selected. This is the item

number of the clicked field in the viewer.

If the user clicks a field in the viewer, the following code shows how to reference the

Field object to get information about the field.

oFields = oEventInfo.GetFields()
oField = oFields.Item(oFields.SelectedFieldIndex)

The Field object has no methods or events. Table 5 lists its properties.

Table 5. This table contains the properties of the Field object.

Property Type Read
Only

Description

FieldType Numeric Y The field type. Possible values:
crBoolean = 5
crCurrency = 4
crDate = 6
crDateTime = 8
crInt16 = 1
crInt32 = 2

crInt8 = 0
crNumber = 3
crString = 9
crTime = 7
crUnknownFieldType
= 255

IsRawData Logical Y .T. if the data is raw data.
Name Character Y The name of the field.
Value Variant Y The value of the field.

Getting back to the report object, there are two events that fire. The first is Clicked, which

occurs when you click an object.

Clicked(nX, nY, oEventInfo, lDefault)

nX Numeric The x coordinate of the object clicked.
nY Numeric The y coordinate of the object clicked.
oEventInfo Object An object containing information about the clicked report object. See

Table 3 for a list of properties for this object.
lDefault Logical If True, performs the default action of the event.

The second is DblClicked, which fires when you double-click an object.

Chapter 12: Previewing the Report at Runtime 297

DblClicked(nX, nY, oEventInfo, lDefault)

nX Numeric The x coordinate of the object that was double-clicked.
nY Numeric The y coordinate of the object that was double-clicked.
oEventInfo Object An object containing information about the clicked report object. See

Table 3 for a list of properties for this object.
lDefault Logical If True, performs the default action of the event.

Drill events
Drill events fire when you double-click an object to drill down.

DrillOnDetail(aValues, nIndex, lDefault)

aValues Array An array of objects containing details on the fields.
nIndex Numeric The index of the array for the field that was actually clicked
lDefault Logical If True, performs the drill down.

DrillOnGraph(nPage, nX, nY, lDefault)

nPage Numeric The page number of the report containing the graph.
nX Numeric The X coordinate of the graph that received the click.
nY Numeric The Y coordinate of the graph that received the click.
lDefault Boolen If True, performs the drill down.

DrillOnGroup(aGroup, nDrillType, lDefault)

aGroup Array An array containing all the group names for the drilled-down group.
nDrillType Numeric The type of drill down. Possible values:

LoadingNothing = 0
LoadingPages = 1

LoadingQueryInfo = 3
LoadingTotaller = 4

lDefault Boolen If True, performs the drill down.

DrillOnSubreport(aGroup, cSubreport, cTitle, nPage, nIndex, lDefault)

aGroup Array An array containing all the group names for the drilled-down group.
cSubreport Character The name of the subreport.
cTitle Character The title of the subreport.
nPage Numeric The page containing the subreport.
nIndex Numeric The index of the drilled-down subreport.
lDefault Logical If True, performs the drill down.

Toolbar objects events
Toolbar object events trigger when you click a control on the toolbar. Here are the event
methods available. In most cases, the only parameter is lDefault.

298 Crystal Reports Application Development

FirstPageButtonClicked(lDefault)

lDefault Logical If True, displays the first page.

LastPageButtonClicked(lDefault)

lDefault Logical If True, displays the last page.

NextPageButtonClicked(lDefault)

lDefault Logical If True, displays the next page.

PrevPageButtonClicked(lDefault)

lDefault Logical If True, displays the previous page.

GotoPageNClicked(lDefault, nPage)

lDefault Logical If True, displays the Nth page.
nPage Numeric The page number to display

CloseButtonClicked(lDefault)

lDefault Logical If True, closes the current view.

ExportButtonClicked(lDefault)

lDefault Logical If True, performs the export.

GroupTreeButtonClicked(lVisible)

lVisible Logical If True, makes the group tree visible.

PrintButtonClicked(lDefault)

lDefault Logical If True, prints the report.

RefreshButtonClicked(lDefault)

lDefault Logical If True, refreshes the report data.

Chapter 12: Previewing the Report at Runtime 299

SearchButtonClicked(cExpression, lDefault)

cExpression Character The expression to search for.
lDefault Logical If True, performs the search.

SearchExpertButtonClicked(lDefault)

lDefault Logical If True, displays the search expert.

StopButtonClicked(nLoadType, lDefault)

nLoadType Numeric The type of data being loaded into the report.
lDefault Logical If True, stops the data load process.

HelpButtonClicked()

Note the HelpButtonClicked event does not send any parameters.

Miscellaneous events
Finally, there are several other events that don’t fit neatly into other categories. The first is the
DownloadStarted event. This event fires when Crystal Reports starts downloading data into a
report.

DownloadStarted(nLoadType)

nLoadType Numeric The type of data being loaded into the report. Possible values:
LoadingNothing = 0
LoadingPages = 1

LoadingQueryInfo = 3
LoadingTotaller = 4

Once Crystal Reports completes the download, it triggers the DownloadFinished event.

DownloadFinished(nLoadType)

nLoadType Numeric The type of data being loaded into the report. Possible values:
LoadingNothing = 0
LoadingPages = 1

LoadingQueryInfo = 3
LoadingTotaller = 4

When the user clicks the Selection Formula button, it fires the

SelectionForumulaButtonClicked event. This event is only valid when the viewer is assigned a
report source from the RDC. In other words, you will probably never use it.

SelectionFormulaButtonClicked(cFormula, lUseDefault)

cFormula Character The current selection formula. This is replaced if the user selects anything.
lUseDefault Logical If True, the default action occurs.

300 Crystal Reports Application Development

The SelectionFormulaBuilt event fires when a new selection formula is applied to
a report.

SelectionFormulaBuilt(cFormula, lDefault)

cFormula Character The selection formula applied to the report.
lDefault Logical If True, performs the default action.

Clicking a particular group in the group tree triggers the ShowGroup event.

ShowGroup(aGroup, lDefault)

aGroup Array An array containing the group list.
lDefault Logical If True, displays the group.

Changing from one view to another causes the ViewChanging event to fire, notifying you

that the view is about to change.

ViewChanging(nOldView, nNewiew)

nOldView Numeric The number of the old view.
nNewView Numeric The number of the new view.

Once the view changes, the ViewChanged event occurs.

ViewChanged(nOldView, nNewView)

nOldView Numeric The number of the old view.
nNewView Numeric The number of the new view.

Changing the Zoom level triggers the ZoomLevelChanged event.

ZoomLevelChanged(nLevel)

nLevel Numeric The new zoom level.

Finally, if an error occurs when you set the Viewer’s ReportSource property or for some

reason the report source cannot load, the OnReportSourceError event fires.

OnReportSourceError(cMessage, nCode, lDefault)

cMessage Character The text of the error message.
nCode Numeric The error number.
lDefault Logical If True, performs the default action.

Chapter 12: Previewing the Report at Runtime 301

Summary
This chapter shows you how to create a report preview form and how to control the preview
itself. Crystal Reports provides many capabilities for controlling the preview process. You will
use the preview control again in Chapter 13, “The Report Designer Control.”

Updates and corrections to this chapter can be found on Hentzenwerke’s web site,
www.hentzenwerke.com. Click “Catalog” and navigate to the page for this book

302 Crystal Reports Application Development

