
Chapter 3: VFE’s IDE 21

Chapter 3
VFE’s IDE

In this chapter, we will take a brief look at the elements of VFE’s Integrated Development
Environment. If you think of VFE as consisting of two major pieces—the toolbox and the
building materials—the IDE would be the toolbox.

What you find when you look in the VFE toolbox is a plethora of tools to help you assemble
the framework classes (which are the building materials) into an application. These tools
enhance the VFP tools and are specifically aware of the framework classes.

As you learned in Chapter 1, “The Big Picture,” there is a wide range of tools in the
IDE. These include the Application Manager, Application Builder, wizards and builders.
There are also some tools in the IDE that allow you to modify the behavior of the framework.
We will briefly describe those here, and we’ll take a closer look at some of them later in
the book.

The Application Manager is the tool where you will start a new VFE project. So, let’s get
started and create our Tutorial application with the Application Manager.

Tutorial
At this point, you should have VFE installed on your computer, including Service Pack 2 and
all subsequent fixes and updates published on the VFE Web site.

1. Start Visual FoxPro using your VFP shortcut with your VFE-specific startup program.

2. Start the Application Manager by choosing it from the Express menu, or by typing
assist in the command window. At this point, the Application Manager should be
centered in your VFP desktop. If not, refer to the VFE installation directions to see
what might have gone wrong.

3. Press the Create button on the VFE Application Manager. This is the leftmost
button with the icon that most applications use to designate “new.” You will be
presented with the first page of a wizard that will step you through the creation of
the application project.

4. Click on the command button with the ellipses to create your project file. You will be
presented with the VFP New Project dialog, with C:\VFE6 as the current directory. At
this point, we will use the functionality of the New File dialog to create a directory in
which to store our project, prior to creating the project.

5. Navigate up to the root directory of C:, and then create a new directory named
“VFEBook.” (If you have already copied the Developer Download files to your PC,
the VFEBook directory will already exist on your C: drive; just navigate into it.)

6. Add a directory named “Tutorial” in the VFEBook directory. This will be the “root”
directory for your application.

22 Creating Visual FoxPro Applications with Visual FoxExpress

7. Double-click into the Tutorial directory.

8. In the file name field of the dialog, type “booktutorial” as the name of your project,
and then click the Save button. You will then be brought back to the wizard, which
will have your new project name with the path you created entered for you.

9. Press the Next button on the wizard, which is indicated by the right arrow icon. You
will be presented with Step 2.

10. This step presents you with some directory information. We will use all the defaults
except for one. Highlight “Intermediate Class Libraries” and press the Select Directory
button, or just double-click the selection in the list. You will be presented with the
Enter Directory dialog.

11. It would be nice if we were given an ellipses button here, but since we’re not, we will
have to do it the hard way. Enter “C:\VFEBook\Tutorial\iLibs” in this text box and
press the OK button. An information dialog will be presented—read the section
“iLibs” later in this chapter for more information on this. Click OK.

12. Press the Next button of the wizard, and you will be presented with Step 3.

13. Enter the information requested in this dialog. We used “Book Tutorial” for the
application name. This information will be used to create a splash screen. Also, the
name entered here is the name that will be displayed in the Application Manager. The
“use local data” switch will be discussed in Chapter 19, “Client/Server.” (Remember,
you already defined the project/exe name in the first step.)

14. Press the Next button to move to Step 4. Enter the requested information. We left this
section blank because we didn’t have these files. You can always add these to your
application at a later date.

15. Press the Next button on the wizard to move to Step 5. Select the defaults for this step,
and then press the Next button to move to Step 6.

16. Yeah! VFE is ready to take what it learned in this interrogation and create your project
directory structure and a starter or shell application. Press the Finish button.

After much whirring, buzzing, messages and status bars, VFE will complete its task. Your
project has been created, and you will now be presented with the Application Builder, which is
the main interface you will use to build your VFE application. At this point, you can even run
your application following two simple steps:

1. Press the Build button. Make sure the “Build Project” action is selected, and then click
the OK button.

2. Press the Run button. With a little luck, your application will run. The Options dialog
will be present the first time you run a new app; just press OK, and then you can look
around the menu and see which standard forms are already built for you.

For more information on your new application, see Chapter 9, “Your VFP Application.”
When you’re done looking around, choose File | Exit from the menu.

Chapter 3: VFE’s IDE 23

Application Manager
As you can see in Figure 1, the Application Manager has eight buttons on it, which
represent the functionality of this tool. The VFE documentation does a fine job of describing
the basic function of each button; see the VFE documentation topic “The Visual FoxExpress
Application Manager.”

Figure 1 . The VFE Application Manager.

By far the most important function of the Application Manager is new project
creation. Now we’ll explain why we made some of the choices we did when we ran the
New Project wizard.

Project directory
If you followed the VFE tutorials, you were prompted to create a directory in a subdirectory
beneath VFE6 to hold your VFP projects. While this approach works, we prefer to create a
directory outside of the VFE directory to hold application projects.

The main reason for this decision is to allow for the possibility of something becoming
corrupted or otherwise messed up inside the VFE6 directory. For example, what if you installed
the service pack without telling WinZip to expand folders? All your files would have been
placed into the VFE6 directory. Or, if you specified the wrong folder to unzip to, all the files
would be in the incorrect directories.

In a situation like this, it would be much simpler to delete the VFE6 directory and reinstall
from scratch. This is similar to installing VFP in the program files directory and building
applications in a separate directory. Also, if you follow the common directory structure, you
should be able to move your applications to a different directory, as there will be no direct
references to the framework classes in your application classes.

24 Creating Visual FoxPro Applications with Visual FoxExpress

iLibs
While most of the classes discussed here start with “C” and are in the …\VFEFramework\Libs
directory, the actual classes you use to build your application are the classes that start with “I”
for intermediate.

The I-classes or I-layer give you a place to modify the functionality of the shipped VFE
classes and still not lose or have to modify the shipped code. When creating applications, you
can have all applications share a common set of iLibs, or you can create a new set for each
application. Also, you could use a common set for some apps and another common set for
other apps.

The reason you created a separate set for this application is because when you get to
Chapter 16, “Extending the Framework,” you may not want these changes in your apps—there
won’t be any conflicts because they wouldn’t use these specific iLibs.

What gets created?
During all that whirring and buzzing, VFE is creating your new project and an application
directory structure. For the most part the directories are empty, but some files are placed there.
Let’s see what directories are created and why.

1. A VFP project file is created. This project file is populated with all of the class
libraries of the framework. VFE also creates some empty class libraries for you to
store your classes in.

2. The following subdirectories are created under your project directory:

a. Data—This is the directory where you are expected to store your database
and table files.

b. Libs—This is the directory where you are expected to store your class libraries.

c. iLibs—If you specified a directory other than the default, this directory was
created in your specified location, and all of the files from the \VFE6\iLibs
directory were copied into it.

d. MetaData—This is the directory in which VFE will create your metadata. See
Chapter 5, “Metadata,” for more information.

e. Misc—A copy of the “default menu” is placed into this directory. You can
read more about the default menu later in this chapter.

f. Output—This is an empty directory in which you are expected to place your
report layout files.

g. Progs—This is an empty directory in which you are expected to place any
PRG files you might create.

3. Perhaps most importantly, a subclass of VFE’s application class was created
and placed in the class library file AAPP.VCX, which was placed in the Libs
directory of your project. The application class is the class that is instantiated
to run your application. This class has properties that are populated based on

Chapter 3: VFE’s IDE 25

information you entered in the wizard, such as company name, icon files and
so forth.

Application Builder
The Application Builder is the main component of the VFE IDE, and it’s where you will spend
most of your time (see Figure 2). The builder is actually a replacement for the VFP Project
Manager. You will see later that the VFP project is actually open but hidden, allowing VFE to
reference and update the project using a project hook class. The Application Builder contains
three pages, labeled Project, Classes and Files.

Figure 2 . The Application Builder is command central while you are building your app.

The Classes page lists all of the classes you have created for your application. The classes
are organized in a tree view that is similar to the Classes page of the VFP Project Manager.
However, instead of being listed by class library file, VFE categorizes the classes based on the
primary building block classes of the VFE framework, which are the cursor, data item, data
environment, business object, presentation object, view parameter container, form, toolbar,
output and other. The application object is found in the “other” object category.

We will discuss each of these classes as we work through the framework and build a small
tutorial application.

Project page
The Project page lists general information about your project (see Figure 2). This page of the
Application Builder is more informative than it is productive. It contains information such as
the name of your application, version number and so forth. It is from this page that you also

26 Creating Visual FoxPro Applications with Visual FoxExpress

access the DBCX Explorer and the Security setup. We will discuss both of these in detail later
in the book.

Classes page
The Classes page provides a categorized view of the classes you have built for your application
(see Figure 3). You will spend most of your time in the Application Builder on the Classes
page. This page is similar to the Files page; however, instead of grouping the files in your
project by file name and directory, they are grouped by class.

Figure 3 . The Classes page categorizes the classes you’ve built.

There is a slight similarity between the Classes page of VFE’s Application Builder and the
VFP Project Manager’s Classes page, as both list all the class libraries in your project. But
VFE takes the organization of your project a step further by classifying the classes list by
category. Each of the major nodes on the Application Builder’s Classes page tree view
corresponds to one of the major class types of VFE. There are five major class types included
in the VFE framework that you will work with: the cursor object, data environment object,
business object, presentation object and form object.

Files page
The Files page, shown in Figure 4, allows you to access all of the items in your project without
leaving VFE; you can even open the framework class libraries from here. Here you’ll see a tree
view that contains all the files that are in the VFP project. As a matter of fact, this page is very
similar to the All page of the VFP Project Manager.

Chapter 3: VFE’s IDE 27

Figure 4 . The Files page provides access to all files in your project, including the
framework files.

If you need to access a specific file in your application, this page will give you access to it.
One thing to remember is that this is the only page from which you can access your menu files.
If you’ve worked with previous versions of VFE, you know that this is a huge improvement.
The Files page allows you to access all of the items.

Wizards
If you take a look at the Classes page of the Application Builder (shown in Figure 3), you will
see that there are many classes you will be building. VFE has provided a wizard to create each
of these classes for you. The wizards bring you through a series of steps requesting the
information needed to build the class you are working on. Your responses will be used to
populate properties in the class and also to add other classes to your class.

For example, a presentation object is a container for the interface controls you need in
order to edit your business object data. The wizard will present you with a list of fields in the
business object. For each field you select, an interface control class will be added to a
presentation object.

To run a wizard, you select the class type you want to build by highlighting a node on
the tree view of the Classes page. Once the class type is highlighted, pressing the New button
will bring up a wizard selection dialog. This dialog lists the wizards available for the class
you selected. You see, you may want to build more than one type of form. You’ll decide
between the Modal Form wizard and the Business Object Form wizard.

28 Creating Visual FoxPro Applications with Visual FoxExpress

One thing you should keep in mind is that the wizards are just tools to get you started.
You don’t have to use the wizards, and, by the same token, you are not limited to what the
wizards build and how they build it. We will discuss this further in Chapter 16, “Extending
the Framework.”

Builders
Once you have created the classes with the wizards, you may want to edit them to your specific
needs, or change them from how you originally specified them. Or you may want to modify
the properties the wizard set when it built a class. Each class in the framework includes a
builder. A builder is a small form/program that is written to set the properties and methods of
a specific class.

You would launch a builder from the Class Designer. A builder provides access to
commonly used properties and also may contain tools to simplify a certain task you need to
perform to set up a control. The Grid Builder, for example, allows you to specify the columns
you would like to be included in the grid (see Figure 5).

Figure 5 . The Grid Builder contains a dialog that allows you to select and order the
fields that will be used in the columns.

DBCX Explorer
An important part of the VFE framework is the metadata. Metadata is information stored about
the data items in the application database. Both the IDE and the framework use this data at both

Chapter 3: VFE’s IDE 29

design time and run time. The DBCX Explorer is a tool provided in VFE, which you will use to
edit the metadata (see Figure 6).

Figure 6 . The DBCX Explorer allows the developer to edit metadata.

The DBCX Explorer is a stand-alone set of windows that you will use alongside the
Application Builder. The left window of this tool displays the data items that have been created
for the application. The window on the right displays the extended attributes that have been
created. Each attribute holds information about the highlighted data item.

Preferences
After installing VFE and running the executable either with a startup program or directly from
the command line, you should have an Express menu pad on your VFP menu bar. The menu
gives you access to the Application Manager, VFE’s Help and tutorials, and a Tools menu.
What we’ll concentrate on here is the Preferences menu item.

If you open the Preferences dialog (see Figure 7), the first page you’ll see is the Objects
page. This is the page you’ll wish you knew about before you started building your application
if you find that you need to make changes to it. This page lists the particular VFE control class
that will be designated when a field is added to the metadata. For example, if you add a text
field to a presentation object, the control class for that text box will be set up as “iTextBox.”
This provides the same functionality for the VFE wizards that the Field Mapping page of the
VFP Options dialog provides when you are in the Form Designer.

30 Creating Visual FoxPro Applications with Visual FoxExpress

Figure 7 . The Objects page of the VFE Preferences dialog displays the class that will
be assigned to fields with the matching data type.

The Wizards page is pretty self-explanatory, so we’ll skip to the Miscellaneous page (see
Figure 8). You should be sure to visit this page prior to creating any VFE applications. The
main check box you want to look at is “Assume Codebook Naming Conventions.” When this is
selected and you add a table to the metadata, VFE will chop off the first letter of each field
name to populate the caption. We tend not to use Hungarian notation on field names, but if you
do, you will always want to turn this check box on.

Figure 8 . The Miscellaneous page of the VFE Preferences dialog has the all-important
“Assume Codebook Naming Conventions” check box.

Chapter 3: VFE’s IDE 31

Express Tools
While these tools are the more common items with which you will become acquainted, there
are a few more items of the IDE that we should take a look at. These items are loaded from the
Express Tools menu pad of the Express menu.

Component Gallery
A feature that was added to Visual FoxPro, which was highly regarded by the programming
community, was the Component Gallery. This program allows users to set up catalogs of files,
grouping and organizing them as they see fit.

VFE has included a Component Gallery catalog that you can access for help when building
your application. The gallery is fully functional and can be used when editing classes or writing
code (see Figure 9).

Figure 9 . The Component Gallery provides quick and organized access to the
framework classes.

Wizard Manager
The Wizard Manager is a tool that allows you to modify the definitions and behavior of the
systems wizards. As we mentioned earlier, the wizards are data-driven; each step is defined in
a database. The Wizard Manager can modify this database. With the ability to modify the
wizards, the framework can be more seamlessly extended by outside programmers (see
Figure 10).

32 Creating Visual FoxPro Applications with Visual FoxExpress

Figure 10 . The Wizard Manager allows you to edit the data that drives VFE’s wizards.

Edit Default Menu choices
Remember that when you created your first VFE application earlier, the default menu file was
copied into the Misc directory of the project. Selecting “Edit Default Menu” from the Tools
menu allows you to edit that default menu and customize it to your liking. Keep in mind that
this is used for the default menu of all applications. The default is used if you don’t change it;
you are more than likely to change an application’s menu once it has been created.

This function uses the standard VFP menu editor. The file is saved in the framework
structure and copied to your application directory by the Application Manager while it is
building your new project.

Summary
It’s easy to see how using VFE is going to save you time and accelerate your productivity.
The Application Manager provides a list of your projects, with tools to build and maintain
the projects. The Application Builder gives you an interface that separates your work into
categories used in the creation of a VFE application. As you work through the framework, you
will recognize each of these categories as the main building block layers of the class libraries.

Finally, you are provided with tools to customize and modify the VFE IDE and framework
to perform the way you want it to. It is not the intent of the framework to be an application
cookie cutter where you stamp out similar applications. The customization tools are there so
that you can insert your style and personality into the applications you build.

Now that you have peered into the toolbox, it’s time to look at the building materials you
will be molding with these tools. As many of us discover when visiting a home improvement
store, you might find something that you didn’t know existed before you entered but then
decide that you just can’t live without it.

