
Chapter 5: Data -Views 1

Chapter 5
Data - Views

Views, a new feature introduced with Visual FoxPro 3.0, provide a way to take a new ap-
proach to many aspects of our applications. At the simplest, views represent a way of
storing queries within the Visual FoxPro database container. They can, if desired, be
used exclusively to provide the interface between forms, code and the data tables.

The term “view” is used interchangeably to identify two different but related things. The first is
the entity that is stored in the Visual FoxPro database—that is, the SQL-Select statement and
related properties that define the view— and the second is the temporary cursor that is created
when the view is opened. There is virtually no difference between opening a view with USE
<ViewName> and executing a query using the INTO CURSOR <cursorName> clause. The
difference lies in the behavior of a cursor created using a simple SELECT…INTO statement
when compared with one created by opening a view.

Views vs. queries
The following features compare and contrast views and queries:

• A view is opened just as a table is—by issuing the USE <ViewName> command; a query
is executed by issuing the SELECT…FROM…INTO command in code, or by executing a
query stored as a .QPR file. Opening a view requires that the database containing the view
definition is open and is currently selected (which can be accomplished with the SET
DATABASE TO command).

• Views do not support the TO, INTO ARRAY and INTO TABLE options of a SELECT-
SQL statement. While the output from queries can be directed to a table or array, or to a
text file, a printer or the screen, views direct their output only to cursors, and the cursor
alias is the same as the name used to identify the view.

• Views can be constructed with runtime parameter variables. These parameter variables can
be pre-populated, or they’ll generate a runtime prompt for a value if the view is opened
without establishing a value for the parameter prior to opening the view.

• Cursors resulting from opening views can be modified. A cursor resulting from an SQL-
SELECT is opened as a read-only file.

• View fields share all of the properties belonging to table fields, including Caption, Com-
ment, DefaultValue, DisplayClass, DisplayClassLibrary, Format, InputMask, RuleExpres-
sion, and RuleText.

• Views share some properties with tables, such as RuleExpression and RuleText.
• Changes made to a view-based cursor can (conditionally) be written back to the tables on

which the view is based.

2 Effective Techniques for Application Development with Visual FoxPro 6.0

The last four items in the above list—the “writability” of views, the table-like properties
for views and view fields, and the fact that changes made to views can affect the underlying
tables—represent the real significance of views for application development.

A read-only view—that is, a view that is intended only to display, not update, our table
data—is not much different from a query. A query can incorporate memory variables in its
WHERE clause that can be assigned values programmatically, join tables, create “virtual” or
“calculated” columns, and so on. The fact that it is more convenient to store views in the data-
base instead of queries in code or .QPR files has caused queries to be used somewhat less often
than was the case with versions of FoxPro prior to version 3. However, this doesn’t differenti-
ate the function of these views within an application—merely the way in which they are pack-
aged.

The remainder of this chapter will focus on the utility of views for manipulating the data in
our applications.

How views work in an application
The short answer to the question “How do we use views in our applications?” is “Just like we
use tables.” In every case, any technique, feature or syntax used with a table can also be used,
100 percent unchanged, with a view. Well, almost.

• If you want a form control to update a field in a table, you specify Alias.FieldName as the
control’s ControlSource property. If you’re working with a view, you use (again)
Alias.FieldName.

• If you want to programmatically change a field in a table, you use REPLACE
<Alias.FieldName> WITH <value>. For a view, you still use REPLACE
<Alias.FieldName> WITH <value>—no difference. In fact, most commands in the Xbase
language, such as SCAN…ENDSCAN, SET FILTER, SCATTER/GATHER, COPY TO,
and so on, work on views just as they do on tables.

• If you want to move to the next record, you use the SKIP command; to skip to the first
record, use the LOCATE command; to skip to the last record, use the GOTO BOTTOM
command. Same for views. If you want to change the order of the items in a table, you SET
ORDER TO <index tag>. To change the order of items in a view, you SET ORDER TO
<index tag>.

• When you’re through editing records in a buffered table and want to commit the changes to
the tables, you use the TableUpdate() function. When working with views, you use the Ta-
bleUpdate() function.

With the last two items in the list above, we begin to get into a couple of areas in which work-
ing with views is a little different than working with tables, and you’ve probably noticed that
we haven’t made any reference to relations or parent/child tables.

We’ll get to these aspects of working with views a little later. For now, the important thing
to be aware of is that working with views differs very little from working directly against tables.

Chapter 5: Data -Views 3

That little something extra
Note that, in the list presented above comparing views and queries, a view’s fields share all the
properties of table fields. This allows the view fields to operate interchangeably with table
fields within an application. As mentioned in the previous section, all commands and functions
or techniques that we might use with table fields will work just as well with view fields.

However, view fields have a whole stack of new properties that are not shared by table
fields; and a bunch of properties are unique to views and not shared by tables. Most of these
relate to the fact that we can update the tables on which the view is based. Some of these prop-
erties are useful only when the view is a remote view, that is, a view that draws records not di-
rectly from Visual FoxPro tables, but from an ODBC data source, usually an SQL database.
SQL databases can include SQL Server or Oracle or an Access .MDB file or even VFP tables if
you access them using ODBC. The other properties are of interest in all updateable views.

The first of these properties we need to be aware of is the SendUpdates property of the
view. If .T., this indicates that changes made to the view can be sent back to the underlying
table. In order for this to happen, VFP requires a critical piece of information: It must have
some way of matching up a particular record in our view with the corresponding record in the
underlying table. It does so by matching up (at minimum) the key fields that, individually or
collectively, uniquely identify each record. In a properly designed database, each record in
every table has a primary key value. This key can be determined by the value of a single field,
or can be a “composite key” that is made up of the values of more than one field (see the previ-
ous chapter on indexes and keys). From this, it follows that we must use the KeyField property
of the view fields to indicate those fields that represent the primary key value of the underlying
table.

The next piece of information needed to make an updateable view “work” is which fields
we want to be updated when we commit changes made to the view. This can include any num-
ber of the fields in the view, although if the view includes “calculated” or “virtual” fields, these
exist only in the view, and cannot be marked as “updateable.”

In the View Designer, these two properties are set by using the “Key” and “Updateable”
columns, and the “Send SQL updates” on the “Update criteria” page.

Finally, we must specify exactly how modifications to the view are sent to the underlying
tables. This involves two different properties: the WhereType property and the UpdateType
property. You will notice option buttons to select these options are also on the “Update crite-
ria” page of the view designer. In the view designer, these properties are set by setting the op-
tions for “SQL WHERE clause includes” and “Update Using.”

The WhereType property specifies how a record in our view is “matched” with a record in
the underlying table. For local views, we have three choices: use the key field(s) only, the key
field(s) along with any modified fields, or the key field(s) and any updateable fields. There is a
fourth choice for remote views that uses the key field(s) and the timestamp placed on the table
by the database server.

From a practical standpoint, the WhereType is actually specifying the answer to the ques-
tion, “How are we to detect an update conflict?” If the WhereType is set to “1–Key Fields
Only,” the update will be made if there is a record in the underlying table that has the same key
value, without regard to the fact that another user may have made changes to the record since
the record was retrieved. At the other extreme, if we specify a value of “2–Key and updatable”
for the WhereType property, an update conflict will be reported (and the update will fail) if any

4 Effective Techniques for Application Development with Visual FoxPro 6.0

updateable field in the underlying table has changed between the time the view is opened and
the time the user tries to commit his changes. In other words, Visual FoxPro looks for a
matching record in the underlying table based on the key field(s) and all of the updatable fields.
If one of these fields has changed, Visual FoxPro will not be able to find the matching record,
and the update will fail. This most closely emulates the behavior of Visual FoxPro tables when
working directly against the tables—if two users update the same record, the last one to attempt
to save her changes gets an update conflict error.

An intermediate choice (and one of the coolest things about using views) is that if we
specify a WhereType of “3–Key and Modified Fields,” then Visual FoxPro examines only the
fields that the user has changed, along with the key field, to find a matching record in the un-
derlying tables. This means that if Bullwinkle modifies only field “A”, and Rocky modifies
only field “B” on the same record, and they both commit their changes, no update conflict oc-
curs—both edits are saved without error.

Buffering and views
There are only two buffering options for views: optimistic row buffering (the default) and op-
timistic table buffering. There is no option for pessimistic buffering (views can’t place a lock
on the underlying tables while open) and there is no way to disable buffering for views. Since
some type of data buffering is the norm for production applications, and since optimistic buff-
ering is preferred in the majority of situations, this does not usually present a significant limita-
tion. If a particular application requires pessimistic buffering, then views may not be appropri-
ate.

Note: While views do not natively provide the ability to pessimistically
lock a record, this does not mean that a situation in which an applica-
tion requires pessimistic locking (the record is locked when it is opened

for editing) cannot consider using views. Views can still be employed in this situa-
tion, but some other mechanism must be employed to determine whether a par-
ticular record can be edited, or if it is already in use by another user. This can be
accomplished by using a “semaphore” locking scheme, in which a shared table is
used to keep track of tables and records open for editing. This table can addition-
ally store information concerning the user, and the date and time the record was
locked. One of the slickest ways of implementing such a semaphore-locking
scheme I’ve heard of is to actually get a lock on the semaphore table record. If an-
other user needs to access the record and cannot lock the corresponding sema-
phore record, then the user is either locked out, or the record is opened “read
only”. The advantage of this approach is that if a user who has a lock on the record
experiences a crash or a power failure, the server automatically removes the lock,
making the record available to other users on the system without the need for an
administrative utility to “unlock” the record.

When a query is executed in Visual FoxPro, all tables named in the query’s FROM clause
are automatically opened. This is also true when using local views. These tables are not buff-
ered, so when a TableUpdate() is issued on a local view, the modifications are written immedi-
ately to the underlying table. While it is possible to explicitly open each of the underlying ta-

�

Chapter 5: Data -Views 5

bles, either in code using the USE command or by placing them in a form’s DataEnvironment
and employing some kind of buffering scheme on them, there is no benefit in doing so. Indeed,
this requires that a TableUpdate() be issued first on each view, and then a second time on each
of the underlying tables in order to commit the changes the user has made to the view. As in
running a query, the underlying tables remain open. Closing the cursor holding the result set
does not close the underlying tables. Thus there is no difference (with one exception) between
allowing a view to open its underlying tables automatically or by placing those tables in the
DataEnvironment—tables added to the DataEnvironment use the form’s buffering setting (none
by default). The exception is when you’re using the Default Data Session. The view will be
closed when the DataEnvironment is destroyed (if AutoCloseTables is .T.), but the underlying
tables are left open. If you add the tables to the DataEnvironment, before adding the views,
they will be closed when the form is closed. Adding the tables first to get this behavior is im-
portant. The tables and views are opened in the order in which their associated cursor objects
are added to the DataEnvironment. If you add the views first, the tables will be opened auto-
matically, and will be left open when the form is destroyed. If the tables are opened before the
views, then the DataEnvironment takes responsibility for closing them when the DataEnviron-
ment is destroyed.

For more information on buffering, see Chapter 7.

Indexing views
Indexing is not a core technique to using views, but it can lend so much to your applications
that it deserves some discussion.

Yes, you can index a view. After the view is opened, you simply execute INDEX ON
<view_name> TAG <tag_name> and you’re all set. You can do this in the Init() method of the
form, or in any other method. However, I’ve found that the best place to perform this task is in
the Init() of the DataEnvironment. This event occurs before any other control is initialized, so
the views are indexed and ready for use by any control. If you’re opening the views with the
NoDataOnLoad property set to .T., then the views contain no records when the DataEnviron-
ment.Init() fires, so the indexes are created almost instantaneously and are then automatically
updated when you execute a REQUERY() on the view. Remember that the result set for a view
is stored in a cursor. When a cursor is closed, the disk-based table associated with it is deleted
from your disk, and likewise any .CDX files containing indexes.

Why would you want to index a view? Here are some reasons:

• To set a relation between two views at runtime. This isn’t something that you need every
day, but put this idea in your bag of tricks—it might come in handy.

• To allow the user to change the order of multiple records in a grid or list box.
• To enable incremental searching in a grid, or on a column other than the first column in a

list box.

For whatever reason you decide to index a view, you need to be aware of some traps for
the unwary involving indexing a view:

6 Effective Techniques for Application Development with Visual FoxPro 6.0

• You cannot index a table-buffered view. You must first set the buffering to row buffering,
create the index, then set the buffering to table buffering. No big deal, but you just need to
be aware of the limitation.

* DataEnvironment.Init()
CURSORSETPROP(‘buffering’,3,<view_alias>) && row buffered
SELECT <view_Alias>
INDEX ON <expression> TAG <tag name>
CURSORSETPROP(‘buffering’,5,<view_Alias>) && back to table buffered

• You cannot create more than one index tag on a read-only view (the ReadOnly property is
.T.). The .CDX file gets flagged as ReadOnly also, and creating a second index tag at-
tempts to write to the .CDX file.

• REQUERY() or SELECT stores the number of records in the result set to the _TALLY
system memory variable. If TALK is set OFF, INDEX and REINDEX do not update
_TALLY, and it is reset to 0. If you’re running with TALK set OFF (the usual situation)
and index a view after opening it, _TALLY will contain 0, without regard to how many re-
cords were in the result set. If you REQUERY() an indexed view, _TALLY will be also be
reset to 0 because the table is REINDEX()ed after the SELECT is re-executed, resetting
_TALLY to 0. In these situations you’ll need to use RECCOUNT() or some other tech-
nique to determine how many records are in the result set.

Parameterized views
Let’s assume we create a view on our 25,000-record customer table, named “v_customer”, that
uses the following query expression:

SELECT * FROM customer

All of the fields are updateable, and the primary key field is flagged as the key field.
Opening this query by issuing the USE v_customer command, or by placing this view into

the DataEnvironment of a form and running the form, will retrieve all 25,000 client records.
We can then locate the customer record we want to work with, make changes, and then issue a
TableUpdate() command to commit the changes.

You’re absolutely right if you’re thinking that all of this doesn’t sound very efficient. First,
the query executes and grabs all 25,000 records. Then, we have an unindexed cursor in which
we’ll have to issue a non-optimized LOCATE command to find a particular customer record
(SEEK() requires an index). This is not normally the way in which updateable views are em-
ployed in an application. Instead, the views are parameterized, that is, a filter condition is es-
tablished in the view that determines which subset of records are retrieved, using a special
memory variable that establishes the filter at runtime.

A view parameter is established by specifying a memory variable as the comparison value
in a WHERE clause, and preceding the name of that memory variable with a question mark, as
in the following example:

CREATE SQL VIEW v_customer AS ;
SELECT * FROM customer WHERE cCust_ID = ?vp_cCust_ID

Chapter 5: Data -Views 7

Many developers are familiar with specifying a memory variable in a WHERE clause. The
difference between doing this and creating a parameterized view is that if the memory variable
does not exist when the view is opened, an error will occur. On the other hand, in a parameter-
ized view, if the memory variable does not exist, a dialog pops up, prompting you for the value
of the variable. However, these types of views aren’t usually used this way in a production ap-
plication. The usual practice is to either open the view using the USE command, but with the
NODATA clause, or more commonly, to place the view into the DataEnvironment of a form,
and set the NoDataOnLoad property to .T.

Here are the effects of establishing a view parameter and opening the view in this way:

• No error is triggered because the memory variable specified in the WHERE clause doesn’t
exist.

• The dialog prompting the user for a parameter value is not triggered.
• The view is opened without any records, so it appears exactly like a newly defined table

does before any records have been added.

After the view is opened using the NODATA keyword, a value can be assigned to the pa-
rameter variable and the REQUERY() function can be called. This will cause the SELECT
command to be re-executed, retrieving all records that match the condition specified by the
WHERE clause and the value of the parameter.

For example, look at the v_Employees view established in the Time and Billing sample
database. All fields are selected, and the WHERE clause (as shown on the FILTER page in the
view designer) is:

WHERE Employees.cEmployeeNumber = ?vp_cEmployeeNumber

Make sure that you SET STATUS BAR ON, and from the command window, issue the
following commands:

USE v_Employees NODATA
vp_cEmployeeNumber = “5”
? REQUERY()

Note that after issuing the USE command, the status bar briefly showed “Selected 0 rec-
ords in .02 seconds”, and then showed “v_employees Record: None”, indicating that we have a
data entity with the alias “v_employees” open in the current work area, and that it contains no
records. After assigning the character value of 5 to the memory variable
vp_cEmployeeNumber, and calling the REQUERY() function, the value of 1 was displayed on
the Visual FoxPro desktop, and status bar briefly displayed “Selected 1 record in .03 seconds”
(your machine may execute the query faster or slower than mine does), then displayed
“v_employees Record: 1/1”. If you browse the result set, you will see that we’ve selected the
record for Laura Callahan.

In general, the parameter for an updateable view will specify a value for one of three
things:

• A primary key value—often for retrieving a parent table record

8 Effective Techniques for Application Development with Visual FoxPro 6.0

• A candidate key value—a non-surrogate alternative to a surrogate primary key
• A foreign key value—often for retrieving child table records

In the case of the v_Employees view, the view parameter specifies a value for the cEm-
ployeeNumber field, a candidate key. We could just as easily establish a view parameter on the
primary key value, which is an integer value found in the iEmployeeID field. However, this
database uses surrogate keys as primary and foreign keys. Surrogate key values are system-
generated and contain no business data. Surrogate keys are established strictly for maintaining a
link between tables, and are seldom, if ever, revealed to the user. As a result of this, and the fact
that the Employees table has no parent table, it is unlikely that the user would know the integer
primary key value, but it’s very likely to know the employee’s employee number. Hence the
logical decision to select records based on the candidate key value.

There is a little gotcha lurking with regard to parameterized views. It is always necessary
to REQUERY() a parameterized view after setting the value of the parameter. Because of this,
be aware that you should not flag a parameterized view as ReadOnly, even if the SendUpdates
property of the view is .F. or if you have no intention of modifying it. The reason is that re-
querying a view attempts to write to the table associated with the cursor, and a “Cannot update
the cursor” error will result.

Note: When working with parameterized views, it’s sometimes helpful
to remember some “tricks” with regard to the WHERE clause.
1. BETWEEN(), which is Rushmore optimizable, can be used not just

to select multiple records that fall within a range of values, but also to select
records that match a single value. This is particularly useful when working with
integer surrogate keys.

SELECT *;
 FROM <table> ;
 WHERE <primary key> BETWEEN ?vp_LowPK and ?vp_HIPk

 If you set liLowPK and lnHIPk to the same value you get one record. If you
instead set it to:

 liLowPK = -2147483647
 lnHIPk = 2147483646

 … you’d get all the records

2. If exact is set OFF and you have a character key value or a filter condition ap-
plied to a character field, the empty string (“”) will match all records.

3. If you prefer to not be dependent on the status of SET EXACT, or want to up-
size to SQL Server (which behaves as if EXACT is set ON), you can use LIKE
and “pad” a view parameter with “%” which is a wildcard character, analogous
to the “*” used in file masks. For example:

SELECT * ;
 FROM <table> ;
 WHERE UPPER(cLastName) LIKE ?vp_cLastName

�

Chapter 5: Data -Views 9

If “SM%” is stored to vp_cLastName, the view will retrieve records for last
names Smith, Smythe, Small, Smeed, and so on.

So what’s the point?
If you haven’t previously worked with views (or thought about them very much), you might be
wondering what advantages views provide.

One very important advantage doesn’t really apply to local views, that is, views that exe-
cute queries against tables in a native Visual FoxPro database. However, this advantage is of
critical importance when using a remote view, which executes a query against a database
server, such as SQL Server, Sybase or Oracle. With remote views, instead of your workstation
examining 100,000 records on the server to determine which ones meet the filter conditions (as
specified in the WHERE clause), the request is processed at the server, and only those records
that meet the filter criteria are returned to the workstation. The end result is that network traffic
is greatly reduced, which is a major benefit of using client/server architecture. The “searching”
is done by the server when opening a remote view, but performed by the client when working
with a local view. Note that, when opening a local view, all of the underlying tables are also
opened to allow the workstation to determine which records meet the selection criteria.

However, many developers have discovered that there are other wonderful advantages in
using local views instead of working directly against the Visual FoxPro tables. I first began
using views in Visual FoxPro 3.0, simply as an exercise to check out this new feature. This
“exercise” quickly evolved into my preferred method of interacting with data, so that I now use
views exclusively for all database interactions. We’ll come back to these specific issues later in
the chapter. But for now, let me simply say that I have discovered that views are a much sim-
pler and cleaner way to interact with data. They require a little more up-front design and im-
plementation work, but the additional effort is leveraged mightily throughout the development
process.

Views in action
Enough talk. Let’s look at a form that actually uses views exclusively to interact with
the database. You can examine the demonstration code by opening the CHAP5 project
(Chap5.pjx) from the download files.

The form that illustrates use of views in data entry and maintenance is TIMECARD.SCX.
Before proceeding further, let me stress that the sample form is “demoware.” It isn’t completely
bullet-proof, and is not intended to be so. For instance, it’s possible to add a new time card
without associating it with any employee. With books, as with software, shipping is a feature,
OK? Also, if you’ve been examining the tables and views up to this point and run with
EXCLUSIVE set ON during development (as I think most of us do), remember to CLOSE
TABLES ALL before trying to run the form, or you’ll get “Error loading file—record number
7. cDmForm <or one of its members>. Loading form or the data environment: Error loading the
data environment: Table is in use.” Boy, do I hate that error—I must see it 20 times a day!

The form allows you to examine any time card for any employee, or create a new time
card. The time card contains a reference to the employee and the date the time card was re-
corded, and is implemented as a single record in the table Time_Cards. The form also displays
the child records stored in the Time_Card_Hours table, which represents the detail of the time

�

10 Effective Techniques for Application Development with Visual FoxPro 6.0

card. This detail includes the date worked, start and ending times, the project worked on, and
the nature of the work performed, stored both as a code in an integer field and as free-form text
in a memo field.

An existing time card is selected by first selecting an employee via a drop-down list, which
in turn populates another drop-down list with a list of time cards on file for that employee,
listed by date. Selecting one date causes a set of detail records to be displayed in a grid. The
grid displays the project and work code for each detail record using a drop-down list. For cos-
metic reasons, the memo field for each record is not displayed in the grid, but in an edit box
immediately below the grid. The form has Add, Save, Cancel, Delete and Close command but-
tons.

Field rules prevent empty values for the line item start and end times, and a table rule pre-
vents entering an end time before a start time. Violation of these rules will prevent saving a
record, and the form gives appropriate error messages.

Adding a record allows selection of an employee using a drop-down list, entry of a date for
the time card, and entry of line-item details. Line-item details are not required to save a record.
AllowAddNew is set to .T. on the grid, allowing the user to add new records simply by pressing
the down arrow while in the grid. Extraneous detail records (determined by seeing a newly ap-
pended record without a value for the date worked) are automatically TableRevert()ed prior to
saving the record.

Before getting into the specifics of the example form, we should take a quick look at the
code in the foundation form class that is used to create the form. Note that these data manipula-
tion methods, while in use in production applications, are expanded upon and made more flexi-
ble by the data handling objects and techniques discussed in Chapter 7.

cDMForm methods
The form for this chapter’s example is based on a foundation form class, cDMForm, designed
to be data-aware, and capable of manipulation of updateable cursors. Most (though not all)
methods of this form class are not in any way specific to the use of views. However, making a
design decision to use views exclusively has allowed some simplification of these methods. For
instance, you won’t see any code checking to see if buffering is in effect for any cursor, because
optimistic buffering is always active for a view. Likewise, it isn’t necessary to check to see if
we’re working with a view or a table when using a function like
CURSORGETPROP(‘SendUpdates’), which applies only to views.

Init()
The Init() event method is set up to accept an argument containing a reference to an application
object, and to pass this object reference to the basic form class from which cDMForm is sub-
classed. More important to this example is the call to the classes’ BuildCursorArray() method.

BuildCursorArray()
In order to write reusable code to manipulate the cursors that may be opened by a form, it is
necessary to maintain a list of the cursors with which we need to be concerned. This means that
when checking for changes to data, saving changes to data, discarding changes to data, and so
on, we need to concern ourselves with a subset of all tables and views that might be open while
a form is running. The Chapter 5 demonstration form TIMECARD.SCX has 11 tables and

Chapter 5: Data -Views 11

views open while running. Only two of these are actually updateable views that the form is in-
tended to manipulate.

Unlike many other container objects in Visual FoxPro, the DataEnvironment object does
not have a collection property for its contained cursor objects. It’s necessary to build and
maintain our own collection of cursors. While we’re at it, as suggested in the previous para-
graph, we might as well create our collection with only those cursor objects that represent up-
dateable views. This makes further checks for the updateability of a cursor in other methods
unnecessary. BuildCursorArray() stores to a form array property, a reference to each Cursor
object in the DataEnvironment that represents an updateable view.

When committing changes, the order in which the various cursors are updated is often very
important. Consider the situation in which you are adding a new set of records that includes a
parent record and a set of child records. If there is an insert trigger on the child table that pre-
vents insertion of child records without a corresponding parent record, it will be necessary to
commit the new parent record first, and then the child records. To enable this behavior, there
must be some way, at design time, to specify this update order. The BuildCursorArray() method
relies on a design decision to always have a numeric digit as the last one or two characters of
the cursor object’s name, and contains an ASSERT to enforce this. This allows the developer to
specify, by way of the last characters of the cursor names, what order is to be used when up-
dating the cursors. This makes it possible for BuildCursorArray() to sort the array of cursors in
the order in which they are to be updated.

The view-specific part of this method is the check for whether the view is updateable, us-
ing the CURSORGETPROP(‘SendUpdates’) function. There is also an interesting bit of code
that stores a connection handle to the form if the view is a remote view. Limiting connections in
a client/server application is highly desirable (it minimizes the chances of running out of re-
sources on the server) so all remote views should be established using the SHARE clause. This,
together with using an existing connection handle for any SQL pass-through commands, means
that your entire application can run using only a single connection to the SQL server (see List-
ing 5-1).

Listing 5-1 . The BuildCursorArray() method.

* BuildCursorArray() Method
LOCAL lnCursors, ;
 lcReference, ;
 loReference, ;
 lcAlias, ;
 x, ;
 lcCursorName

LOCAL ARRAY laCursors[1]
* Create an array of all objects in the
* form’s DataEnvironment. Since we will eventually
* be winnowing this list down to only the cursors
* we might as well start out calling the array laCursors
* and the number thereof lnCursors
lnCursors = AMEMBERS(laCursors, THISFORM.DATAENVIRONMENT, 2)
IF lnCursors = 0
 THISFORM.nCursors = 0
 RETURN
ENDIF

12 Effective Techniques for Application Development with Visual FoxPro 6.0

* Swap the name stored in each element
* with the object that the name refers to
FOR x = 1 TO lnCursors
 IF VARTYPE(laCursors[x]) = "L"
 EXIT
 ENDIF
 lcReference = "THISFORM.DataEnvironment." + laCursors[x]
 loReference = EVALUATE(lcReference)
 * just in case someone sneaks in a relation on
 * us, we'll get rid of it
 IF LOWER(loReference.BASECLASS) = "relation"
 ADEL(laCursors,x)
 lnCursors = lnCursors - 1
 x = x - 1
 LOOP
 ENDIF
 laCursors[x] = loReference
ENDFOR

* Eliminate from the array any references to
* cursor objects that represent an updateable
FOR x = 1 TO lnCursors
 IF VARTYPE(laCursors[x]) = "L"
 EXIT
 ENDIF
 lcAlias = laCursors[x].ALIAS
 IF x = 1 AND THISFORM.nConnectHandle = 0
 * Nothing has established a connection handle
 IF CURSORGETPROP("Sourcetype",lcAlias) = 2
 * This is a remote view, so we'll grab the
 * connection handle for this view so it's
 * available for the use of any SQL pass-through
 * commands we may need to execute
 THISFORM.nConnectHandle = CURSORGETPROP("ConnectHandle",lcAlias)
 ENDIF
 ENDIF
 IF CURSORGETPROP("SendUpdates",lcAlias) = .F. OR laCursors[x].READONLY
 * This cursor represents a read-only entity,
 * so we'll get rid of it
 ADEL(laCursors,x)
 lnCursors = lnCursors - 1
 x = x - 1
 LOOP
 ENDIF
ENDFOR
* Transfer the array of cursors and the
* number thereof to the form
THISFORM.nCursors = lnCursors
DIMENSION THISFORM.aCursors(THISFORM.nCursors, 2)
FOR x = 1 TO THISFORM.nCursors
 THISFORM.aCursors[x,1] = laCursors[x]
ENDFOR

* Store the 'number' of the cursor object
* to the second column of the form array property
FOR x = 1 TO THISFORM.nCursors
 lcCursorName = THISFORM.aCursors[x,1].NAME
 ASSERT ISDIGIT(RIGHT(lcCursorName,1))

Chapter 5: Data -Views 13

 * If this assert fails, the developer didn't
 * follow the practice of ending each cursor
 * name with a 1 or 2-digit numeric value
 IF ISDIGIT(LEFT(RIGHT(lcCursorName,2),1))
 THISFORM.aCursors[x,2] = VAL(RIGHT(lcCursorName,2))
 ELSE
 THISFORM.aCursors[x,2] = VAL(RIGHT(lcCursorName,1))
 ENDIF
ENDFOR
* Now, sort the aCursors array according to
* the 'number' of the cursor
ASORT(THISFORM.aCursors, 2)

Our technical editor has pointed out that the BuildCursorArray() method in Listing 5-1
makes an assumption that we won’t be mixing local and remote views, hence the check for a
connection handle only when encountering the first view. You’ll need to modify this bit of code
if you have a database that does indeed mix the two view types, because the first view encoun-
tered may not be remote.

Changed()
An important service that the form needs to provide is the ability to detect if the data being dis-
played by the form has been changed. This is needed when the user is in mid-edit and tries to
close the form, or if the application tries to close the form programmatically. We want to allow
the user to save his changes before the form is closed, discard the changes, or cancel whatever
operation is closing the form. This whole mechanism for the cDMForm class is handled by the
QueryUnload(), Close() and OkToClose() methods. However, they all rely on the Changed()
method to determine the situation with regard to the form.

This method works by detecting “dirty” buffers, or data buffers in which some value has
been changed since the data was retrieved from the disk where it is stored. To do this, it relies
on the GETFLDSTATE() function. GETFLDSTATE() does a good job of distinguishing be-
tween the following four conditions:

• A newly appended record, unchanged
• An existing record, unchanged
• A newly appended record, changed
• An existing record, changed

A shortcoming of GETFLDSTATE(), and therefore a shortcoming of this method, is that it
cannot distinguish between a value that was changed by the user but was later changed back to
its original value, nor can it distinguish between a modification that was initiated by the user
and a modification that was triggered in a newly appended record by a default value or the exe-
cution of a rule.

You will note the comment in this code that all views should be table buffered, even if you
have only one record. This is because of the fact (discovered and documented by our able tech-
nical editor) that certain operations, contrary to expectation, will attempt to move the record
pointer. If the view is row buffered, this will cause an automatic TableUpdate(), which is to be
avoided at all costs. The update can fail, especially since the user hasn’t finished with his data
entry. And without the code written in the Save() method (discussed below), the user could be

14 Effective Techniques for Application Development with Visual FoxPro 6.0

faced with a cryptic Visual FoxPro-generated error dialog, rather than the user-friendly and
informative message that the HandleError() method will present. However, the Changed()
method is bracketed to handle either type of buffering, so it won’t inadvertently trigger an up-
date if the cursor, for some reason, isn’t table buffered.

One significant advantage of using local views is that you have in your possession only a
subset of records. This means that you can act (when appropriate) on all records, rather than
trying to restrict any operation to a subset of the records of a table using SCAN FOR or filters
or some other mechanism. This gives rise to a view-specific behavior of this method, which is
that there is no limitation on the SCAN…ENDSCAN applied on table-buffered views. If this
code were to be executed on a million-record, table-buffered table, this could have a noticeable
impact on performance.

One might suggest, instead of relying on GETFLDSTATE() to detect changes, to use the
GETNEXTMODIFIED() function instead. However, GETNEXTMODIFIED() considers a
newly appended blank record to be a modified record, whether or not it contains any data, and
it is still necessary to use GETFLDSTATE() to determine if the record can be discarded. Also,
because of Visual FoxPro’s near-light-speed handling of its native cursors, the
SCAN…ENDSCAN executes in the blink of an eye, even with thousands of records to exam-
ine. Finally, the SCAN…ENDSCAN loop terminates immediately if it detects a changed rec-
ord. See Listing 5-2.

Listing 5-2 . The Changed() method.

* Changed() method
LOCAL lcStatus, ;
 lcAlias , ;
 lcOldAlias, ;
 lnCurrentRecord, ;
 llRetVal, ;
 x
lcOldAlias = ALIAS()
* Loop through our collection
* of updateable cursors
FOR x = 1 TO THISFORM.nCursors
 lcAlias = THISFORM.aCursors[x,1].ALIAS
 * Check to see if the cursor is table buffered
 * (they should all be table buffered)
 IF CURSORGETPROP('buffering',lcAlias) = 5
 * Store the current record
 * Change to the work area of the cursor
 SELECT (lcAlias)
 * The following line deals successfully with empty cursors
 lnCurrentRecord = ;
IIF(EOF(lcAlias),RECCOUNT(lcAlias),RECNO(lcAlias))
 * Check all records to see if they've changed
 SCAN
 lcStatus = GETFLDSTATE(-1,lcAlias)
 * Note - GETFLDSTATE() returns .NULL.
 * if at EOF()
 IF !ISNULL(lcStatus) ;
 AND ("2" $ lcStatus ;
 OR "4" $ lcStatus)
 llRetVal = .T.

Chapter 5: Data -Views 15

 * If this record has changed
 * proceed no further
 EXIT
 ENDIF
 ENDSCAN
 * Don’t position the record pointer
 * if we’re dealing with an empty cursor
 IF lnCurrentRecord > 0
 GOTO lnCurrentRecord
 ENDIF
 IF llRetVal = .T.
 EXIT
 ENDIF
 ELSE
 * Yadda, yadda, yadda....
 lcStatus = GETFLDSTATE(-1,lcAlias)
 IF !ISNULL(lcStatus) ;
 AND ("2" $ lcStatus ;
 OR "4" $ lcStatus)
 llRetVal = .T.
 EXIT
 ENDIF
 ENDIF
ENDFOR
IF ! EMPTY(lcOldAlias)
 SELECT (lcOldAlias)
ENDIF
RETURN llRetVal

Cancel()
The Cancel() method (see Listing 5-3) allows you to execute the TABLEREVERT() function
on all updateable cursors, and uses the cursors collection created by the BuildCursorArray()
method. While it seems that many developers believe forms should always be in “edit mode,”
there are circumstances, and sometimes entire applications, that require the user to explicitly
put the form into an “edit mode” before he can modify the data. Hence the inclusion of a reset
of the form’s lEditMode property in the Cancel() method. If interested, you can examine the
lEditWatch property and the Refresh() method of the foundation control classes in the
cContrls.VCX class library that is included in the CHAP5 project.

Listing 5-3 . The Cancel() method.

* Cancel() method
LOCAL lcAlias , ;
 x
* Loop through the cursors collection
* and execute a TableRevert() on each
FOR x = 1 TO THISFORM.nCursors
 lcAlias = THISFORM.aCursors[x,1].ALIAS
 TABLEREVERT(.T.,lcAlias)
ENDFOR
THISFORM.lEditMode = .F.
THISFORM.REFRESH()

16 Effective Techniques for Application Development with Visual FoxPro 6.0

Delete()
The foundation classes used in this example are based on a production application currently in
development. In the past, it has been my practice to leave this method empty in the foundation
class, and write form-specific delete method code in the form instance. Thus far, in the applica-
tion we’re developing, the assumptions inherent in this foundation class code have stood up
well. The assumptions are:

• If only one table is updateable, it will be the table indicated by the InitialSelectedAlias
property of the DataEnvironment object. If there is more than one updateable cursor, there
will be a familial (parent/child/grandchild/great-grandchild) relationship between the up-
dateable cursors, and the parent table will be the one indicated by the InitialSelectedAlias
property of the DataEnvironment object.

• Deletion of a parent record will never require interaction with child records at the level of
the form; that is, any interaction with child records is handled by the database via delete
triggers.

• The interface standard for deletion is to immediately commit the change and “clear” the
display of the current record, hence the call to the form’s Save() and ClearCursors() meth-
ods. A confirmation (“do you really want to delete…”) dialog is an option that can be im-
plemented in the form instance, and can execute the foundation class Delete() method con-
ditionally.

The foregoing assumptions (note the ASSERT in Listing 5-4 below) allow the Delete()
method to concern itself only with the alias specified in the InitialSelectedAlias property. The
ClearCursors() method is empty at the level of the foundation cDMForm class, and is discussed
later in the context of the Time Card form.

Listing 5-4 . The Delete() method.

* Delete() method
WITH THISFORM
 ASSERT ! EMPTY(.DATAENVIRONMENT.INITIALSELECTEDALIAS)
 SELECT (.DATAENVIRONMENT.INITIALSELECTEDALIAS)
 DELETE
 IF .SAVE()

 .ClearCursors()
 .REFRESH()
ENDIF

ENDWITH

Save()
The Save() method does all the things that a good Save() method should:

• Provides a “hook” via a call to an empty method (BeforeSave()) that allows last-minute
actions to be executed just before committing changes. Typical and form-specific actions
that this method could perform are updating child records with foreign-key values, deleting
extraneous records, modifying cursors based on calculated values, such as storing a total to
a parent record based on a total of child record fields, and so on.

Chapter 5: Data -Views 17

• Wraps all TableUpdate() commands in a transaction, ensuring all-or-nothing commitment
of a multiple-table update.

• Calls the TableUpdate() function for each cursor in the cursors collection, in the order
specified by the cursors collection.

• Executes an END TRANSACTION if all updates were successful.
• Executes a ROLLBACK if all updates were not successful, and stores all error information

to a form array.
• Calls other form methods conditionally depending on success or failure of the updates:

AfterSuccessfulSave() in the case of successful updates, and HandleError() and After-
FailedSave() if the saves fail.

Note: When an update is issued on a view, Visual FoxPro translates
the TableUpdate() into an SQL update command, based on the view
properties. If (as is usually the case) the WHERE type is specified as

“Key and modified fields,” then the UPDATE command has a WHERE clause that
includes each of the modified fields listed, along with their old values. If the
WhereType is specified as “Key and Updatable Fields”, the UPDATE command
will have a WHERE clause that includes all of the updateable fields. In Visual Fox-
Pro 3.0 and 5.0, a list of fields in the WHERE clause that exceeded approximately
24 fields, the TableUpdate() will trigger an “SQL: Statement too long” error. This is
because there is an internal limitation on the size of the WHERE clause. In my
testing, I have not been able to consistently duplicate the 24-field limitation, but it
seems to occur consistently within the range of 23 to 28 fields. Note that this limi-
tation does not apply to remote views, nor does it apply to newly appended rec-
ords.

I must admit that I’ve never triggered this error in a production application. However, it
would be irresponsible for Microsoft to leave this situation unaddressed. With the release of
Visual FoxPro 6, this limitation has been increased to 40 fields, and the VFP development team
have given us yet another SYS() function, SYS(3055) that allows us to further increase this
limit, albeit with some performance penalty. Should you run up against this scenario, you can
look to SYS(3055) as a way of selectively changing the limit when necessary

Listing 5-5 . The Save() method.

* Save() method
LOCAL lcAlias , ;
 llSuccess, ;
 x
THISFORM.BeforeSave()
BEGIN TRANSACTION
* Use the cursors collection
FOR x = 1 TO THISFORM.nCursors
 * determine the cursor alias
 lcAlias = THISFORM.aCursors[x,1].ALIAS
 * Update all rows, don’t force the update
 llSuccess = TABLEUPDATE(1,.F.,lcAlias)
 IF !llSuccess
 ROLLBACK

�

18 Effective Techniques for Application Development with Visual FoxPro 6.0

 AERROR(THISFORM.aErrorInfo)
 EXIT
 ENDIF
ENDFOR
IF llSuccess
 END TRANSACTION
 THISFORM.AfterSuccessfulSave()
 THISFORM.lEditMode = .F.
 THISFORM.REFRESH()
ELSE
 THISFORM.HandleError()
 THISFORM.AfterFailedSave()
ENDIF
RETURN llSuccess

uKeyValue property, uKeyValue_Assign() and Requery() methods
The vast majority of forms have a single key value that determines the set of records that are
retrieved. A primary key value for a parent table is also the foreign key value for the child rec-
ords. This value is often needed by various methods of the form; rather than passing it around
as method arguments and storing it using local memory variables, it’s much more convenient to
store it to a form property. Because this key value can be of any data type, the property in the
foundation class for storing this value is uKeyValue, and has “u” (for “unknown”) as its initial
character.

Forms that use parameterized views in their DataEnvironment will have the cursor’s No-
DataOnLoad property set to .T. This allows the view to open without having to first establish
and assign a value to the view parameter variable. After the views are open and the form is up
and running, it is then possible to programmatically establish the proper value for the view pa-
rameter, and then call the REQUERY() function to retrieve the records that the user wants to
work with. In the foundation cDMForm class, there is an empty Requery() method that is
populated with form-specific code in each instance of the form.

In versions of Visual FoxPro prior to version 6, a call to the form’s Requery() method im-
mediately followed the line that stored the key value to the form property. VFP 6.0 now has
something called an ASSIGN method, which is triggered whenever its associated property is
modified. The ASSIGN method can be used to change the value that actually gets assigned,
prevent assignment of certain values, take some action depending on the old and new values of
the property, or simply execute some code in response to the changed value. This last function
is the one that is intended for the uKeyValue_Assign() method. Note that the default code for
an ASSIGN method accepts a parameter that holds the new value for the property being modi-
fied, and the method then stores this value to the property. As you will see, in the form instance
it is important to call the DODEFAULT() function and pass the new property value before
calling the form’s Requery() method, because the Requery() method will expect the new value
to be stored in the uKeyValue property.

Before proceeding with a detailed discussion of the sample form, take a moment to go
back over the preceding methods, and notice how little difference there is from the same meth-
ods that you might write to work with tables directly. The only new method is the Requery()
method, which would likely be replaced by a Lookup() method in a table-based form.

Chapter 5: Data -Views 19

The views used by the Time Card form
The Time Card form uses six views, as illustrated in Table 1.

Table 1 . Views used by the Time Card form.
View name Param-

eterized
Update-
able

Comments

V_Time_Cards Yes Yes The view of the parent table
being updated—one record
by primary key value.

V_Time_Card_Hours Yes Yes The view of the child table
being updated—multiple
records by foreign key.

V_EmployeeListRO No No A list of all employees.
V_TimeCardsByEmp
ID_RO

Yes No A list of time cards on file
for a particular employee.

V_SystemCodesRO Yes No A list of codes—parameter
specifies which type of code
is retrieved.

V_ProjectListRO No No A list of all current projects.

Some views are opened by being placed into the DataEnvironment of the form, while oth-
ers are opened programmatically at runtime.

Views in the DataEnvironment
Opening TIMECARD.SCX in the form designer and opening the DataEnvironment, you will
see four views. You can immediately tell that they’re views because they all begin with “v_”,
my naming convention for views. You’ll notice that two of the views end with the letters “RO”.
This is another convention that I employ to indicate that these views are “read only,” that is,
their SendUpdates property is set to .F. These views are present only for the purpose of popu-
lating two drop-down lists. v_EmployeeListRO supports a drop-down list (actually, two—cbo-
EmployeeLookup and cboEmployee), and v_Time_Cards_ByEmpID_RO supports another—
cboTimeCards.

The v_EmployeeListRO view is not parameterized. It simply pulls up a list of employee
names (a virtual field concatenating first and last names) along with their last names (for sorting
purposes), their employee number and their surrogate employee ID values. The last is impor-
tant because the employee number is not stored in any other table other than the employee ta-
ble. If we need to retrieve other sets of records based on a selected employee (and we do), we’ll
need the surrogate key, not the employee number. The drop-down list class that uses this view
is cboEmployees and is stored in the CHAP5.VCX class library.

The important properties of the combo box class are:

• BoundColumn = 3
• ColumnCount = 2 (allows the Employee number to display when dropped down)
• RowSourceType = 2—Alias
• RowSource = "v_EmployeeListRO"

20 Effective Techniques for Application Development with Visual FoxPro 6.0

• Style = 2—drop-down list
• BoundTo = .T. (the bound column is an integer type)

There is also an ASSERT in the Init() to make sure that the developer remembered to add
the view named in the RowSource to the DataEnvironment.

The v_TimeCardsByEmpID_RO view is parameterized, allowing it to retrieve only those
records that correspond to a particular employee. The field being matched is iEmployeeID, and
the view parameter is ?vp_iEmployeeID. I think you can detect another naming convention
here, related to View Parameters. The fields in the view are simply the date of the time card,
and the primary key value for that record, which is found in the iTimeCardID field. This is the
foreign key value in the Time_Card_Hours table, and will be used to establish a view parameter
for that view also.

The combo box that uses this view, cboTimeCards, is also stored in CHAP5.VCX. The
following are the important properties for this combobox:

• BoundColumn = 2
• ColumnCount = 1
• RowSourceType = 2—Alias
• RowSource = "v_time_cardsByEmpID_RO"
• Value = 0
• Style = 2—drop-down list
• BoundTo = .T. (the bound column is an integer)

The other two views are the “meat” of the form. These are the two updateable views that
are actually being manipulated. v_Time_Cards duplicates the structure of the Time_Cards ta-
ble, and v_Time_Card_Hours duplicates the structure of the Time_Card_Hours table. All fields
are updateable, and the primary key field for both views has a default value of
NEWID(“<tableName>”).

You might be wondering why I’m establishing the primary key value in the view rather
than at the database level. First, there’s no rule that says you can’t do both (which is the case
here.) Unlike the behavior in VFP 3, a default value dirties the buffer. Thus, if it’s established
in the view, the TableUpdate() doesn’t cause a second primary key value to be generated in the
table; but it will accept and store the value generated in the view. However, the advantage with
establishing the default value in the view (beyond just being able to do so) is that it’s then
available to use in populating the foreign key value of any child table records that have been
added. SQL Server has a feature whereby you can establish an integer column as an identity
column, which is automatically incremented, and can be determined after a TableUpdate() us-
ing SQL pass-through to retrieve the @@identity value. However, if you plan on upsizing an
application to client/server, or (the gods forbid!) you have to create an application that can
work with either local or remote data, it’s a good idea to establish a method that won’t have to
be bracketed or rewritten to work in a client/server environment. Establishing the PK value in
the views works in either environment.

As long as we’re on the subject of primary key values, Listing 5-6 shows the NEWID()
function that is kept in the database’s stored procedures for calculating new PK values. Chapter
4 presented a GetKey() function that serves the same purpose. However, if the PK table is

Chapter 5: Data -Views 21

stored in a remote database, we don’t have access to the Xbase functions like SEEK() and
LOCATE, so I came up with a NEWID() function that will again work seamlessly across a lo-
cal data and client/server environment. It uses the same table structure for the NextKey table as
is used in Chapter 4.

Listing 5-6 . A NEWID() function that relies on views and SQL rather than Xbase.

* NEWID() Function
FUNCTION NewID(tcTable)
ASSERT VARTYPE(tcTable) = "C" ;
 AND ! EMPTY(tcTable)
LOCAL lnRetVal, ;
 lcOldAlias, ;
 llSuccess
lcOldAlias = ALIAS()
lnRetVal = 0
vp_cTableName = UPPER(tcTable)
IF ! USED("v_NextKey")
 USE "time and billing!v_NextKey" IN 0
ELSE
 REQUERY("v_NextKey")
ENDIF
IF _TALLY = 1
 SELECT v_NextKey
 llSuccess = .F.
 DO WHILE ! llSuccess
 lnRetVal = v_NextKey.iNextKey
 REPLACE v_NextKey.iNextKey WITH v_NextKey.iNextKey + 1
 llSuccess = TABLEUPDATE(1)
 * If the TABLEUPDATE() fails, it means that some other
 * user grabbed the key value we were about to use
 * and replaced it with an incremented value
 * so we just grab the one the other user placed in
 * the NextKey table and try again
 IF ! llSuccess
 REQUERY("v_NextKey")
 ENDIF
 ENDDO
ENDIF
IF ! EMPTY(lcOldAlias)
 SELECT (lcOldAlias)
ENDIF
RETURN lnRetVal

The v_Time_Cards view also has a default value of DATE() for its tDateEntered field, and
there is a rule on the tDateWorked field of the v_Time_Card_Hours view. The rule is a func-
tion in the database’s stored procedures, and is shown in Listing 5-7.

Listing 5-7 . A field-level rule to facilitate data entry.

FUNCTION time_card_date_rule()
 REPLACE tStart WITH tDateWorked + 9*3600
 REPLACE tEnd WITH tDateWorked + 16*3600
ENDFUNC

22 Effective Techniques for Application Development with Visual FoxPro 6.0

This rule simply “roughs in” a start time of 9:00 a.m. and an end time of 4:00 p.m. based
on the date entered for the tDateWorked field. This illustrates one of the slickest aspects of
using local views. You can use two entirely different sets of rules—one set for the tables in the
database that enforce data integrity, and a second set in the views that facilitate data entry. Us-
ing a field or row-level rule on a view is often much easier than trying to write code in a grid’s
When(), AfterRowColChange(), BeforeRowColChange() and Delete() events, or in the LostFo-
cus(), Valid() or InteractiveChange() events of its contained controls!

Runtime views
By running TIMECARD.SCX and opening the Data Sessions window, you can quickly see the
tables and views that are in use by the form at runtime. You’ll notice that the following views
are not opened by the DataEnvironment:

• v_SystemCodesRO
• v_ProjectListRO

Listing 5-8 shows the commands that create these two views (this is just for illustration; both
views can be created in the View Designer).

Listing 5-8 . Read-only views for project and system codes picklists.

CREATE SQL VIEW v_ProjectListRO AS ;
 SELECT Projects.cprojectname, ;
 Projects.iprojectid;
 FROM "time and billing!projects";
 ORDER BY Projects.cprojectname

CREATE SQL VIEW v_SystemCodesRO AS ;
 SELECT Systemcodes.cdescription, ;
 Systemcodes.icode_id;
 FROM "time and billing!systemcodes";
 WHERE Systemcodes.ctype = ?vp_cType;
 ORDER BY Systemcodes.cdescription

The drop-down-list picklists that use these views work a little differently than the two dis-
cussed above. First, they are a little more “encapsulated.” They use a RowSourceType of 5–
Array, and have their own array property to hold the contents of the two views above. Also,
they open the views if they’re not already open, so the views they use don’t have to be added to
the DataEnvironment. They work by calling their Requery() method from their Init() event.
This is also convenient if these picklists need to be refreshed as a result of opening another
form, adding a new project or code, and then returning to the time card form. A call to the
Requery() methods of these two controls does the trick. Listing 5-9 shows the code in the
cboProjects class:

Listing 5-9 . The Requery() method of the object cboProjects.

LOCAL lcOldAlias ;
 lnTally ;
 lnRowCount

Chapter 5: Data -Views 23

lcOldAlias = ALIAS()
* Make sure the database is open
* and currently active, otherwise
* the view can't be found
IF !DBUSED("time and billing")
 OPEN DATABASE "time and billing"
ENDIF
SET DATABASE TO "time and billing"
IF ! USED("v_ProjectListRO")
 USE v_ProjectListRO NODATA IN 0
ENDIF
* Make sure we have the latest version
REQUERY("v_ProjectListRO")
lnTally = _TALLY
IF lnTally = 0
 DIMENSION THIS.alist[1,2]
 STORE "" TO THIS.alist
ELSE
 DIMENSION THIS.alist[lnTally,2]
ENDIF
SELECT v_ProjectListRO
lnRowCount = 1
SCAN
 THIS.alist[lnRowCount,1] = v_ProjectListRO.cProjectName
 THIS.alist[lnRowCount,2] = v_ProjectListRO.iProjectID
 lnRowCount = lnRowCount + 1
ENDSCAN

IF !EMPTY(lcOldAlias)
 SELECT (lcOldAlias)
ENDIF

Note: If you’re used to saving and restoring environmental settings in
your code, you may wonder about the SET DATABASE command. You
need to be concerned about the currently selected database when a)

programmatically opening a view, b) calling a function/procedure in the stored pro-
cedures, or c) retrieving a property using DBGETPROP(). If you don't SET
DATABASE TO prior to issuing any of those commands, you’ll get hosed eventu-
ally, even if you only have one database opened, because it isn’t necessarily cur-
rently selected. Thus, the proper defensive programming practice is not to save
and restore the currently selected database, but to make sure that you have the
database (or the correct database, if you are dealing with more than one) currently
selected before issuing a command that works on the currently selected database.
Not having an open database selected as the current database poses no problem
in other situations.

Similarly, with private data sessions, bound form controls, and the addition of alias
clauses to most commands and functions that act on a cursor, the need to save
and restore the current work area is greatly reduced, even though many of us—out
of habit—continue to do so. I have adopted the practice of never using a command
or function without explicitly specifying an alias for the appropriate work area when
the command or function supports an alias or work area argument. As a result, as

�

24 Effective Techniques for Application Development with Visual FoxPro 6.0

with SET DATABASE, I program defensively by never assuming the state of the
environment, and always select the proper work area for those few commands
(like APPEND FROM or LOCATE or SCAN…ENDSCAN) that do not accept an
argument to specify an alias or work area.

As you can see from the code in Listing 5-9, the cboProjects control has two columns (but
only displays the first), with the names of the projects in the first column, and the second with
the surrogate primary key value for each project.

CHAP5.VCX contains two other combo boxes that are both subclassed from cboSys-
temCodes. cboSystemCodes uses v_SystemCodesRO, which is parameterized as shown in
Listing 5-8. The SystemCodes table is an “overloaded” table. If you browse it, you’ll see that it
contains two different kinds of codes: work codes and expense codes. cboSystemCodes calls its
Requery() method just as does cboProjects. However, its Requery() method has to establish a
view parameter to retrieve only one type of code from the SystemCodes table. This value is
stored in the cType property of cboSystemCodes. The Requery() method for cboSystemCodes
is shown in Listing 5-10.

Listing 5-10 . The Requery() method for cboSystemCodes.

LOCAL lcOldAlias ;
 lnTally ;
 lnRowCount

lcOldAlias = ALIAS()

IF !DBUSED("time and billing")
 OPEN DATABASE "time and billing"
ENDIF
SET DATABASE TO "time and billing"
IF !USED("v_SystemCodesRO")
 USE v_SystemCodesRO NODATA IN 0
ENDIF
* Here’s where we establish the view
* parameter
vp_cType = THIS.cType
REQUERY("v_SystemCodesRO")
lnTally = _TALLY
IF lnTally = 0
 DIMENSION THIS.alist[1,2]
 STORE "" TO THIS.alist
ELSE
 DIMENSION THIS.alist[lnTally,2]
ENDIF
SELECT v_SystemCodesRO
lnRowCount = 1
SCAN
 THIS.alist[lnRowCount,1] = v_SystemCodesRO.cDescription
 THIS.alist[lnRowCount,2] = v_SystemCodesRO.iCode_ID
 lnRowCount = lnRowCount + 1
ENDSCAN

IF !EMPTY(lcOldAlias)
 SELECT (lcOldAlias)
ENDIF

Chapter 5: Data -Views 25

The two classes subclassed from cboSystemCodes are cboWorkCodes and cboExpen-
seCodes, and each has its cType property set accordingly.

Note: Our ever-vigilant technical editor was wondering about my use of
SCAN…ENDSCAN to transfer information from cursors into the arrays
used by the combo box picklists. One of the powerful aspects of views

is that they are data-source independent. All views are stored as a local cursor.
Thus, a view is a view as far as VFP is concerned. It doesn’t matter whether the
view is drawing from a VFP database, a FoxPro 2.x database, an Access .MDB file
or a SQL Server database. As long as the view definition is what the code expects
it to be, it doesn’t care (or know, usually) where the data actually comes from.
However, unlike the situation where we know that the data will only come from a
Visual FoxPro table, and can use a SELECT…INTO ARRAY, views cannot be di-
rected into arrays. Even if we use ODBC and SQL pass-through, the results of a
query executed with SQLEXEC() are placed into a cursor. By using a view and
SCAN…ENDSCAN to transfer view contents to the array, we can freely change
the source of the data without having to change the code.Depending on the situa-
tion, COPY TO ARRAY can be used, but SCAN…ENDSCAN provides a little more
flexibility to concatenate or otherwise modify the cursor contents. For a lot more
information on these techniques, refer to Chapter 11

The grid
The grid in the time card form contains an instance of cboProjects and an instance of
cboWorkCodes, so the description of the codes is displayed, rather than the code itself. To al-
low these codes to be displayed all the time, the Sparse property of the columns is set to .F. For
cosmetic purposes, the SpecialEffect property of the lists is set to “1–Plain” and the Border-
Style is set to “0–None”.

The old swaperoo
When the form is first run, two drop-down-list-style picklists are visible at the top of the
form—one for employees and the other for time cards by date. When the Add() button is
clicked, the employee drop-down list is made invisible, and another is made visible, in the same
position and identical to the first. The difference is that the “add mode” drop-down list is bound
to the iEmployeeID field of the v_Time_Cards view, and the “edit mode” drop-down list is not.
The cboEmployeeLookup control is used only for specifying an employee whose time cards
you want to edit. The cboEmployee control is used to modify the employee ID of a new record.

Also, when the form goes into “add mode,” the drop-down list that shows time cards for
specific dates for the selected employee is made invisible, and a text box bound to the
v_Time_Cards.tDateEntered field is made visible. The process of toggling these four controls
is performed by the Add() method, the Cancel() method and the AfterSuccessfulSave() method.

Cut to the chase
Now that we’ve gotten the mundane stuff out of the way, let’s concentrate on the real work of
the form.

�

26 Effective Techniques for Application Development with Visual FoxPro 6.0

In order to work with views, a form performs two basic functions that distinguish them
from forms working directly against Visual FoxPro tables. It stores user-determined key values
to view parameters and calls the REQUERY() function on each updateable view. Beyond that,
there isn’t much that is really different from how a form would handle the tables directly.

In practice, the only features of a view-form that are different from a table-form are how it
accesses an existing record, and that it follows a slightly different procedure before adding new
records.

Selecting a time card—accessing an existing record
To select a time card for viewing or editing, the user first selects an employee. The Interactive-
Change of the cboEmployeeLookup control stores its value to the form’s iEmployeeID prop-
erty. An iEmployeeID_Assign method is thus triggered. This method, shown in part in Listing
5-11, establishes the view parameter and executes the REQUERY() on the
v_Time_CardsByEmpID_RO view and calls cboTimeCards.Requery() to update it with the
new list of time cards for the selected employee.

Listing 5-11 . Part of the iEmployeeID_Assign method.

vp_iEmployeeID = ThisForm.iEmployeeID
REQUERY("v_time_CardsByEmpID_RO")
ThisForm.cboTimeCards.Requery()

Control returns to the InteractiveChange event method of cboEmployeeLookup, which
then sets the value of cboTimeCards to 0, to reflect that none of the time cards for this em-
ployee are selected. At this point, the list property of cboTimeCards has been populated with
the records from v_Time_CardsByEmpID_RO, which is a list of all the time cards, ordered by
date, that are on file for the selected employee.

The act of storing 0 to the value property of cboTimeCards causes its Programmatic-
Change event to fire, which calls the method code for the InteractiveChange event. This is pri-
marily for the purpose of “clearing” the display when the user is already viewing a time card
and wants to view a different time card. We’ll see how this is accomplished in a moment.

The next thing the user does, after selecting an employee, is select which time card he
wishes to view by making a selection from the cboTimeCards drop-down list. The Interactive-
Change() event method of cboTimeCards stores the drop-down’s value (the iTimeCardID of
the selected time card) to the uKeyValue property of the form. There is an assign method asso-
ciated with the uKeyValue property. This method calls the form’s Requery() method. The code
for the uKeyValue_Assign and the Requery() method are shown in Listing 5-12.

Listing 5-12 . The uKeyValue_Assign() and Requery() methods.

* uKeyValue_Assign
LPARAMETERS vnewval
DoDefault(vnewval) && Stores the iTimeCardID value to the form’s uKeyValue
property
ThisForm.Requery()

* Requery() Method
vp_iTimeCardID = ThisForm.uKeyValue
REQUERY("v_Time_Card_Hours")

Chapter 5: Data -Views 27

REQUERY("v_Time_Cards")
ThisForm.Refresh()

As you can see from Listing 5-12, four lines of code take the form’s uKeyValue property
(which is a primary key value for the Time_Cards table, and a foreign key value for the
Time_Card_Hours table) and retrieve the corresponding records from each table by calling the
REQUERY() function for each view, then refreshing the form.

Adding a new time card
Adding a new time card requires two steps. The first is “blanking,” “clearing” or “purging” the
cursors. This means requerying the updateable views in such a way that they contain no rec-
ords—they're ready to have a new, empty record appended. This is what differentiates adding
records in a form that uses views from one that works with tables. The second step is the same
step necessary when working with tables—appending blank records to the cursors, ready to
accept the data that the user wants to enter.

Clearing cursors is important, because when working with views it is imperative that you
never have records “in hand,” other than those you intend to work with. Simply doing an
APPEND BLANK on v_Time_Cards when viewing another record would give you two rec-
ords—one for the new one you are adding, and another for the one you were just viewing. Be-
cause of this, when adding a new record (or deleting an existing record), it is necessary to do
something that will result in a RECCOUNT() of 0 for all updateable views.

Logically, simply executing a query using a view parameter value that has no correspond-
ing records in the table will do the trick. If you’re using integer surrogate keys, and are retriev-
ing records by the key values (and have a rule that says the primary keys can’t be 0) then you’re
all set. Storing a 0 to the view parameters and calling REQUERY() will have the desired re-
sult—views with empty result sets.

If, on the other hand, you’re using character surrogate keys, things become a little trickier.
If you’re doing the filter comparison using “=” and EXACT is set OFF, or if you use the LIKE
operator, then you have to ensure that the character string that you specify does not, and will
never, exist in the table, nor will it ever appear as a subset of the key values in the table. If you
are using a base 62 scheme (which uses all uppercase and lowercase letters as well as the digits
0–9), you can never guarantee that you won’t someday match an existing record. If you run
with EXACT ON, or use the “==” operator, you can clear the cursor by using the empty string
for the view parameter.

If the view uses a non-surrogate character field for the view parameter comparison, it may
be easy to select an expression that will never show up in the table. For instance, if the filter
comparison is being performed on the cInvoiceNo field, and the invoice numbers are six char-
acters consisting only of the digits 0–9, then you can use a parameter value of “XXXXXX” (or
any other string of alpha characters) to clear the cursors.

In the case of the Time Card form, the key values are indeed integers, and there is a rule on
the primary key field prohibiting 0 values. Storing a value of 0 to the view parameters for both
v_Time_Cards and v_Time_Card_Hours and requerying both views will yield an empty result
set for both views.

Recognizing the need for this functionality, the cDMForm contains an empty ClearCur-
sors() method. In the Time Card form, this method has only a single line of code:

28 Effective Techniques for Application Development with Visual FoxPro 6.0

ThisForm.cboEmployeeLookup.Value = 0

Executing this line of code will initiate the following cascade of events, courtesy of control
events and the new assign methods. Note that nothing in this cascade of events is anything dif-
ferent than what has already been coded to allow the user to display an existing time card. The
user cannot (by selecting an employee from the list) select an iEmployeeID value of 0, so the
ClearCursors() method takes care of this:

• Changing the value property of cboEmployeeLookup to 0 triggers CboEmployee-
Lookup.ProgrammaticChange().

• CboEmployeeLookup.ProgrammaticChange() calls CboEmployee-
Lookup.InteractiveChange().

• CboEmployeeLookup.InteractiveChange() stores 0 to the form’s iEmployeeID property.
• Storing 0 to the form’s iEmployeeID property triggers the iEmployeeID_Assign method.
• The iEmployeeID_Assign method stores 0 to the view parameter and calls REQUERY()

for v_Time_CardsByEmpID_RO, which clears that view.
• CboEmployeeLookup.InteractiveChange() also stores 0 to cboTimeCards.Value, which

triggers cboTimeCards.ProgrammaticChange().
• cboTimeCards.ProgrammaticChange() calls cboTimeCards.InteractiveChange().
• cboTimeCards.InteractiveChange() stores 0 to the form’s uKeyValue property.
• Storing 0 to the form’s uKeyValue property triggers the uKeyValue_Assign() method.
• uKeyValue_Assign() calls the form’s Requery() method, which calls REQUERY() for

v_Time_Cards and v_Time_Card_Hours, which clears both views.

Before leaving the example form, I’d like to call your attention to the BeforeSave()
method, which does something that might look a bit unusual in the case of a deleted time-card
record. This database has a delete trigger on the Time_Cards table, which causes all related
child records in Time_Card_Hours to be deleted if the Time_Cards record is deleted. If the
user has modified any records in v_Time_Card_Hours before deleting the time card, the update
of the v_Time_Cards view (which, you’ll recall, occurs first because the cursor name for this
view ends in “1”) will delete the related Time_Card_Hours records. Then, the update of the
v_Time_Card_Hours view takes place, and it will detect that the underlying tables have been
changed (they’ve been deleted!) and the update will fail because of an update conflict.

To avoid this, the BeforeSave() method checks to see if the parent record in v_Time_Cards
has been deleted, and if so, it reverts any changes made to the child view.

The View/Query Designer
Within a typical application, views will fall into one of two groups: one group of views de-
signed as updateable views that are used to modify the data, and another group designed as
non-updateable views, to support reports, on-screen inquires, picklists and validation queries.
In general, updateable views are almost always parameterized and usually incorporate fields
from only a single table.

Although you can feel extremely clever constructing a single view that joins three tables
and performs updates on all three, I’ve found that the KISS (Keep It Simple, Stupid!) principle
applies as well to the creation of updateable views as it does to almost any other aspect of ap-

Chapter 5: Data -Views 29

plication development. When creating updateable views, adhere to the following three rules of
thumb:

1. The SQL property of the view should look like this: SELECT * FROM <table_name>
WHERE <field_name> = <view_parameter> — note only one table, no joins.

2. A single field should be flagged as the key field. If you’re using integer surrogate keys,
you’re home free.

3. All fields should be flagged as updateable.

Save your cleverness for adding some useful “virtual” fields to your updateable views or
creating rules that facilitate data entry … and save a lot of cleverness for those thorny reporting
requirements that the client has in the specifications!

From the previous couple of paragraphs, you can see that the View Designer does a good
job meeting all your needs for creating updateable views. But the View Designer really falls
down in some of the complex queries required for some lists and reports. Let’s take a moment
to understand why the View Designer is so limited in this area.

There are two types of join syntax that are permitted under the ANSI ’92 SQL standard.
Many have come to describe the two types of syntax as the “nested” and the “sequential” syn-
tax. The following listings show only the FROM clause of a SELECT command to illustrate the
differences.

Listing 5-13 . An example of “nested” join syntax.

1. FROM <table_1> ;
2. JOIN <table_2> ;
3. JOIN <table_3> ;
4. JOIN <table_4> ;
5. ON <table_4_expression> = <table_3_expression> ;
6. ON <table_3_expression> = <table_2_expression> ;
7. ON <table_2_expression> = <table_1_expression> ;

In Listing 5-13, line 6 shows an expression joining table_3 with table_2, but it could just as
well join table_4 with table_3, or any other table within the “nest.”

Listing 5-14 . An example of “sequential” join syntax.

1. FROM <table_1> JOIN <table_2> ;
2. ON <table_1_expression> = <table_2_expression> ;
3. JOIN <table_3> ;
4. ON <table_3_expression> = <table_2_expression> ;
5. JOIN <table_4> ;
6. ON <table_4_expression> = <table_3_expression>

In Listing 5-14, line 6 could join table_4 with table_3, table_2 or table_1; this fact seems
readily apparent and quite intuitive. In general, I strongly believe that anyone who tries to cre-
ate a complex query using the “nested” syntax, as shown in Listing 5-13, is a confirmed maso-

30 Effective Techniques for Application Development with Visual FoxPro 6.0

chist, and should be kept away form sharp objects. The reason becomes apparent when trying
to create a join as illustrated in Figure 1.

Figure 1 . A join scenario suspected to be impossible using the "nested" join syntax.

Figure 1 illustrates a view that has, as a requirement, the customer name, order items, total
amount, order date and ship date, as well as the description associated with the terms code,
status code, and the shipping code on each order. Using the "sequential" syntax, it’s a walk in
the park. Using the "nested" syntax … well, call me when you have it done—meanwhile, I’m
going on a two-month vacation.

Even if we simplify the query illustrated in Figure 1 by eliminating the need for descrip-
tions from two of the three code tables, the nested syntax is still somewhat cumbersome, re-
quiring us to be very careful with the order in which the joins are made to get the desired re-
sults. Matters get even worse when you introduce outer joins into the equation. To be fair, there
might be some unique capabilities inherent in the nested syntax, but I have yet to discover
them.

So what does this have to do with the Visual FoxPro View Designer? The view designer
stores the join conditions using the nested syntax. As a result, it becomes either very difficult to
use, or downright useless when creating a complex view.

All is not lost, however. Most experienced developers include a file that ends up being
called something like VIEWSCRIPT.PRG (see Listing 5-15) in which these complex views
can be maintained in code. If you’re not already comfortable with writing SQL code, I strongly
encourage you to develop that skill as soon as possible. Many skills we acquire eventually be-
come obsolete. However, I think the ability to easily write SQL query syntax is one that really
has some “legs,” and will be useful for many years to come.

The big drawback in maintaining a view in code is that we have no easy way to set the
properties for the various view fields, such as which field is the key field, what fields are up-
dateable, and what UpdateType and WhereType are to be used. Establishing these rules in code
requires a long sequence of DBSETPROP() commands. However, as mentioned above, most (if
not all) of the updateable views you will be using involve no joins, and as a result can be han-
dled very nicely using the View Designer. The views that you will most likely be creating and

Chapter 5: Data -Views 31

maintaining in code are used for reports and for creating on-screen queries and form picklists.
This type of view is not an updateable view, but a "read–only" view, as shown in the Chapter 5
example form, and exists only to conveniently store a scheme for extracting and presenting
some information from the database. A view is by default not updateable. So creating a com-
plex view in code doesn’t have to do anything other than specify the name under which the
view is stored, and the SELECT statement with the view parameters (if any). Using the exam-
ple illustrated in Figure 1, you might see a developer use the code in Listing 5-15 to support
this particular report.

Listing 5-15 . An example of a "read-only" view that would be maintained in code in a
VIEWSCRIPT.PRG file.

PROCEDURE Create_V_Order_Status_RO
 CREATE SQL VIEW v_Order_Status_RO AS ;
 SELECT customers.cName, ;
 orders.iItems, ;
 orders.dordered, ;
 orders.dshipped, ;
 orders.ytotal, ;
 termscodes.cDescription AS terms, ;
 statusCodes.cDescription AS status, ;
 shippingCodes.cDescription AS via, ;
 FROM customers JOIN orders ;
 ON customers.cCust_ID = orders.cCust_ID ;
 JOIN systemcodes termsCodes;
 ON orders.iTerms_Ref = termsCodes.iCode_ID ;
 JOIN systemcodes statusCodes ;
 ON orders.iStatus_Ref = statusCodes.iCode_ID ;
 JOIN systemcodes shippingCodes ;
 On orders.iShip_Ref = shippingCodes.iCode_ID ;
 WHERE orders.cCust_ID = ?vp_cCust_ID
ENDPROC

Once this procedure is written, it can be executed as shown in Listing 5-16.

Listing 5-16 . Executing the view-maintenance routine in Listing 5-15.

IF NOT DBUSED(“<target_database>”)
 OPEN DATABASE <target_database>
ENDIF
SET DATABASE TO <target_database>
SET PROCEDURE TO viewscript ADDITIVE
DO create_v_order_status_RO

However, my preferred method is to open the target database and make it the currently
selected database with SET DATABASE (this is important!). Then, open the
VIEWSCRIPT.PRG in the Visual FoxPro editor, highlight everything within the procedure,
right-click with the mouse and choose “Execute selection” from the shortcut menu. This is par-
ticularly convenient when it’s necessary to modify the view. You modify, select and run the
CREATE SQL VIEW command, then close and save the VIEWSCRIPT.PRG.

32 Effective Techniques for Application Development with Visual FoxPro 6.0

The case for updateable views
Let me clearly state that I in no way want to try to convince anyone that views are the only way,
or even the “right” way, to interact with data. There is no principle, or best practice, or even a
rule of thumb that will dictate when/if you should use updateable views. There is no rule (or
even a school of thought) that says you’re a dummy if you don’t use views, and there is cer-
tainly no rule that says you can’t use a mixture of updateable views and direct table manipula-
tion. However, in my life as a developer, certain things have come down the pike that have
resonated with my soul in some way—things that make me say to myself, “This is Right; This is
Good.” Procedural programming, naming conventions, black-box routines, reusable code and
object-oriented programming were all concepts that “clicked” when I began to understand how
they worked. Each new approach or idea brought me a big step closer to some kind of pro-
grammer’s Nirvana, where the DoWhatIMean() function is a reality! Once I started using up-
dateable views, I experienced the same feeling of “Wow” that I did with some of the earlier
concepts. I hope that more folks give views a spin, and find themselves closer to Programming
Perfection as I did.

Why would you exclusively use views?
First, I’ve found that working with views is a very easy way to interact with data. The whole
process has a very “clean” feel to it. This is not a factor to be discounted—how much of what
we do in our development practices do we do simply because “it feels right"?

There are no indexes, relations or filters that have to be maintained at runtime to ensure
that we’re only modifying the data that we intend to modify. With the exception of occasionally
restoring the record pointer to its original position after moving it when doing some kind of
processing, and checking for an EOF() condition when appropriate, the record pointer can be
ignored. Views can be indexed if it's necessary to allow the user to control the order in which
records are displayed, and the index order can be changed without concern for “breaking” an
established relation.

Then there are field-level rules. Work with tables and you really don’t want to enforce
field-level rules; violating a rule means the user absolutely cannot leave a field or control until
the rule is satisfied. Likewise, a row-level rule must be satisfied before moving the record
pointer to another record (See Chapter 6 for more information on rules). With views, field-level
and row-level rules can be used freely because they aren’t evaluated until the TableUpdate() is
executed.

While on the subject of rules, we can establish two completely different sets of rules: one
at the table level to enforce data integrity, and one at the view level to facilitate data entry. I’ve
spent days trying to accomplish the most god-awful things using the myriad of grid events and
other form controls, that were suddenly a piece of cake when I called a stored procedure from a
view field- or row-level rule.(Refer to Chapters 11 and 12 for some important views on using
Grids).

Server-based SQL databases are increasingly popular, and being able to interact with them
effectively is a valuable skill. Acquiring this skill requires that we begin to think entirely within
the constraints of SQL commands. You can’t perform a SEEK on a SQL Server table to vali-
date a user’s input. However, you can create a lookup table on the fly using a view, index that
view, and use that for validation. You can also use a view and dispense with Xbase syntax al-
most entirely, as shown in Listing 5-17.

Chapter 5: Data -Views 33

Listing 5-17 . A sample data-validation function using a view.

FUNCTION ValidatePartNumber(tcPartNumber)
 vp_cPartNumber = tcPartNumber
 IF ! USED(“v_ValidatePart”)
 USE v_ValidatePart IN 0
 ELSE
 REQUERY(“v_ValidatePart”)
 ENDIF
 IF _TALLY = 0
 llReturnValue = .F.
 ELSE
 llReturnValue = .T.
 ENDIF
 RETURN llReturnValue
ENDFUNC

Note that the foregoing function works equally well with remote views as it does with local
views.

Designing Visual FoxPro applications using views exclusively helps you to begin thinking
more in terms of pure SQL, which not only influences how you implement the application, but
with how you design the database!

Jim : Steve and I agree about a lot of things, but exclusive use of views isn’t one
of them. Views, both local and remote, are very powerful tools and they should
not be dismissed from our collection of weapons. However, exclusively doing

anything in application development leaves the possibility of missing a mechanism of solving a
problem simply because it doesn’t fit our exclusive vision of things.

The design of the data access mechanisms should be part of the analysis and design of
the overall application, and it should consider all of the issues involved. Using views for data
access exclusively is one of many options available to the developer, and it should be consid-
ered as such: one of the possibilities.

Data-aware form classes should be capable of handling views and tables in the data for
the form. Not doing this simply creates a form class that fails under certain conditions.

There are times when the extra overhead of views is not necessary—for example, in a
small departmental system where using tables directly is fine. Also, using views can seriously
complicate development of real-time systems. The level of indirection that is the very power of
a view causes an inherent problem in real-time applications.

So, I say, keep things in perspective. Views are powerful and they offer certain advan-
tages. However, nothing is just advantages; all things also carry disadvantages. To blindly go
forward without acknowledgement of the disadvantages of a certain path is giving those disad-
vantages absolute power over your work.

Now that I’ve said all of this, I have to agree with Steve that, in most cases, using views
exclusively for data management is a very good approach to development.

Steve replies:

I agree with Jim’s points in general. However, my experience is that the “extra overhead” that
Jim speaks of isn't really worth worrying about. In fact, making a design decision to use views
lends a simplicity and clarity to the development process that is really quite surprising once you

34 Effective Techniques for Application Development with Visual FoxPro 6.0

get involved with it. Believe me when I say that I’m probably one of the world’s laziest develop-
ers, and if something is a lot of extra work or headache, I’m quick to dump it. I agree that few
things in life consist only of advantages, but updateable views are one of the things that seem
a little thin on the downside.

Performance considerations
A concern I frequently hear from developers when I talk about using views is that using views
will slow down the application. Consider that Visual FoxPro is (and long has been) the fastest
database management tool in the known universe. Views are simply one way of retrieving data,
and retrieving data is what FoxPro does best, right?

Just to provide a couple of examples, I have a view in a production application that uses a
complex series of outer joins to extract 1163 records from four tables containing 51, 117, 1223
and 1229 records. This view executes (starting with all tables closed) in 0.45 seconds on a 200
MHz laptop with a run-of-the-mill IDE drive. I also have a view that extracts 5100 records
from a single table of 126,000 records in 0.43 seconds on the same machine. Remember that
virtually every updateable view you are likely to use will be indexed on the primary or foreign
key, and that this is the field that is used in the WHERE clause in the query. Rushmore kicks in
every time, and you get the records fast-fast-fast!

If you take the time to give views a try, you’ll find just how easy they are to use, and how
in many ways they’ll make your life much easier. They do require some up-front time and effort
to get comfortable with the ideas and techniques, and perhaps a little more design work at the
database level, but it’s effort that pays off handsomely in the long run.

