Chapter 9: Forms 1

Chapter 9
Forms

In many ways, the forms for an application are what it's all about—everything else is just
along to hand 'em the saw! Forms allow the user to interact with the data, so from the
user's standpoint, forms can arguably be considered the "heart" of the application. This
chapter begins to look at forms as containers for the form controls that are discussed in
chapters 10 and 11, and discusses issues that relate to forms without regard to what you
put on them and what data they manipulate.

Loose coupling and forms
Without getting too esoteric, let me simply offer the advice that all fehosldbe capable of
running independently from an application or from other forms. This accomplishes a couple of
things. First, it greatly facilitates development, testing and debugging. I'm much more inclined
to create a form incrementally (adding a little piece of functionality at a time and testing) if |
don't have to fire up the entire application in order to test it.

Secondly, it encourages a good design principle knoviwoag couplingmore on this a
little later). Clearly, it isn't possible to follow this stricture in all cases. At a minimum, some
forms are designed to accept an optional parameter, and it will be necessary to test another
form's ability to pass the argument and for the form being tested to receive and act on the pa-
rameter. Then, too, there are cases in which two forms operate cooperatively in some way. In
general, if your app has a form that you can't simply run using DO FORM <form name> from
the command window, the design of that form deserves a second look. The dependencies of
such a form may indeed be unavoidable; however, forms that display this level of dependence
should be the exception rather than the rule.

Steve McConnell, in his landmark boGlkde CompletéMicrosoft Press, 1993), presents
the concept of Loose Coupling. While much of his book does not address object-oriented or
object-based systems specifically, the principles he sets forth are often just as applicable (with
some conceptual adaptation) to an object-oriented development tool like Visual FoxPro.
"Loose Coupling" in a procedural language simply means "black-boxing" your code. A loosely
coupled routine can be called from anywhere in a system and it will do its job, without regard
to where it is called or the state of the system when it is called. The knowledge that the rest of
the system requires of the routine's inner workings is minimized to (at most) a parameter list.

If Steve McConnell's book Code Complete (Microsoft Press, 1993,
ISBN 1-55615-484-4) isn't on your bookshelf (or maybe even on your
nightstand), it should be. In my opinion, any programmer or application

developer absolutely must read this book if they consider themselves a profes-
sional. Other books are important, too (see Appendix 4), but this is the one you
absolutely cannot ignore. If you can't spare the time or expense to find, buy and
read this book, you might want to consider taking up something else for a living. |
keep it on my desk (alongside The Hacker's Guide to Visual FoxPro) and read



2 Effective Techniques for Application Development with Visual FoxPro 6.0

from it randomly on a regular basis for inspiration, just as others will consult the
Book of Changes, or The Prophet or Thoughts of Chairman Mao.

Extending this idea to Visual FoxPro forms, loose coupling means that our forms should
ideally be able to run in any context. Clearly, a form is usually pretty dependent on the avail-
ability of data structured in a specific way, with certain expectations as to the names of tables,
fields, indexes and so on. However, given that minimal requirement, the form should be able to
function, at least in some manner, without dependence on other parts of the system.

In Chapter 3 | discussed "system-level services," and it is perfectly reasonable to have our
forms make use of these serviedsen availablebut be able to function properly even if the
system-level services in question are unavailable. As an example, consider an application with
the following features:

« The application employs a form manager object. This object is responsible for actually
launching all forms, keeping track of which forms are in use, and allowing us to program-
matically manipulate our running forms—to cascade them, close them, tile them, and so
on.

* The application is one in which one form frequently launches another related (modeless)
form; thus it will make calls to the DoForm() method of the form manager object.

« The form manager object always passes a self-reference to any form it launches so that the
form can easily communicate with the form manager.

As you might imagine, to support these features requires a method of the foundation form class
called DoForm(). This method passes the name (and any optional parameters) to the form man-
ager object, telling it what form it needs to launch, and has code in its Init() method to accept
the reference to the form manager object. While at first it sounds like it will be difficult to test
these forms without having the form manager object hanging about, the solution is to just
bracket the necessary code as showristing 9-1.

Listing 9-1. Bracketing form method code to reduce dependence on system-level
services.

* |nit() Method
LPARAMETERS toFormManager
ThisForm.oFormManger = toFormManager

* DoForm() Method
LPARAMETERS tcFormName, tuParm1, tuParm2
IF VARTYPE(ThisForm.oFormManager) = "'O™ ;
AND NOT ISNULL(ThisForm.oFormManager)
ThisForm.oFormManger.DoForm(tcFormName,tuParm1,tuParm?2)
ELSE
DO CASE
CASE PCOUNT() =1
DO FORM (tcFormName) WITH .NULL.
CASE PCOUNT() = 2
DO FORM (tcFormName) WITH .NULL., tuParm1
CASE PCOUNT() =3
DO FORM (tcFormName) WITH .NULL., tuParm1, tuParm2
ENDCASE



Chapter 9: Forms 3

ENDIF

The point here is that the form can make use of the system-level service if it's available, but can
function just fine without it when necessary. There are several ways this can be accomplished.
First, as shown in Listing 9-1, the form (or any other object) can simply provide the re-

quired service itself, in the absence of another object that normally provides the service. The
form is only interested in getting another form launched. The other services of the form man-
ager object are not really of much interest to the form, although they are very important to the
application as a whole. It's like a worker who needs to have a bunch of photocopies run off, but
finds that the clerical person who normally handles this is out to lunch. The worker simply does
the job himself.

Second, in the absence of an object to provide certain services, the form can instantiate the
object that normally provides the services, or a substitute object that can provide the services.
For example, an application object might provide a service to read information from and write
information to the system registry. In the context of the application, the form, when run, nor-
mally asks the application object what 'its position and WindowState was the last time the user
opened this form, so it can restore those settings. If the form is running from the command win-
dow (without the application object present), it could simply instantiate an object that provides
those services (like the registry object that is included in the VFP 6 REGISTRY.VCX sample
class library).

Finally, the form can simply exhibit certain default behaviors or settings in the absence of a
system-level service. As in the example above, if the application object doesn't exist, the form
simply centers itself on the screen at a default size.

You may feel that providing application-level support for a certain function, and then pro-
viding the means for a form to provide this service directly is redundant. It is, and should lead
you to think about how you want to provide this functionality. | prefer to provide this kind of
functionality globally to the application. You may prefer to simply have the form provide the
service in all cases. With my approach, the ability of the form to provide the service is useful
only during testing an action of a form that relies on the application-level service. Using the
registry example above, my code checks for the existence of a registry interface object, and if it
doesn't exist, simply establishes default values that it would have retrieved from the registry
had the registry object been available. Does this mean that | can only test the code that depends
on values obtained from the registry object by running the entire application? No. My registry
classes “register” themselves as the registry object if they find that their parent object is a form.
The following code is the Init() code from my registry class:

DODEFAULT()
IF VARTYPE(This.Parent) = "O";
AND UPPER(This.Parent.BaseClass) = "FORM"
[IHasRegObjectProp = PEMSTATUS(This.Parent,"oregistry",5)
IF lIHasRegObjectProp
ThisForm.oRegistry = This
ENDIF
ENDIF



4 Effective Techniques for Application Development with Visual FoxPro 6.0

Thus, when | need to test the form’s ability to read and write to the registry, rather than
firing up the entire application, | can simply drop an instance of the registry object onto the
form, run and test the form, then remove the registry object from the form.

If | were to find that | was testing this functionality on every form, I'd be inclined to in-
clude the registry object in my form foundation class, and abandon the approach of providing
these services only through the an application-level registry object

However application independence is achieved for our forms, it makes our lives as devel-
opers much easier, and in the long run makes our forms and the applications in which they're
used a little more flexible, and much better designed.

Private data sessions
Right on the heels of the transition from procedurally generated "screens" to object-based
forms and the ability to create modeless forms without any special coding, the introduction of
theprivate data sessiois one of the most significant advances in user-interface creation gained
with Visual FoxPro. Only those of you who used FoxPro and other Xbase languages prior to
Visual FoxPro 3.0 can appreciate this feature. Literally millions of lines of code have probably
been written to allow different FoxPro 2.x screens to operate simultaneously on their own set of
data without hosing the other screen's' data environment. The private data session "scopes" the
tables, views, index files, relations, filters, record pointers, controlling indexes and many of the
environmental settings that affect how data-related elements behavddorthe/ithout a pri-
vate data session, forms would all be playing in the same sandbox. Form "B" could open a ta-
ble, and if it wasn't careful to select an empty work area, could inadvertently close a table that
was currently in use by Form "A". Form "B" or a procedure could change an environmental
setting, say SET NEAR from "OFF" to "ON", significantly changing the behavior of Form "A".
Provided that your intention is to create a modeless, event-driven application, "2 - Private
Data Session" should be just about the only setting that you use for the DataSession property.
There may be situations in which you might have system-level tables open in the default data
session and need to have a form to interact with them; however, this should be the exception.

Sharing data sessions
One issue that developers often have to face is the concept of a "child" form, that is, a form
(usually modal) that is launched from and intended to interact with the data displayed on an-
other form. One technique is to create a parent form with a private data session, and from that
form launch a modal child form that uses a default data session. This will, indeed, allow the
child form to interact with the parent form's data, and will, in effect, "share" the parent form's
data session. However, there is a piece of anomalous behavior that has not (in my experience)
caused any difficulty, but certainly causes many of us to think twice about using this method.
When a form with a private data session is run, its data session is identified by number and
the name of the form that created it in the Data Session window (for example, frmTest1(2)).
When this form launches a modal form that uses the default data session, the Data Session will
show the new form name along with the data session (that is, frmTest2(2)). So far, so good.
Now, however, when the second modal form is closed, the Data Session window shows Un-
known(2). VFP knows what data session is in use, but for some reason no longer recognizes the
form participating in this data session. If you want to use this method of sharing data sessions,
be aware of this behavior, so that if something does get a little squirrelly at some point, you



Chapter 9: Forms 5

won't be too surprised. On the other hand, Microsoft has indicated that this behavior is indeed
"by design," and that no unexpected or undesired effects of this anomalous reference to an "un-
known" data session are to be expected.

Another issue with sharing a data session in this way is that if the child footnimdal,
the parent form can be destroyed, taking the data session with it and closing all tables that the
child table is using. Some steps must be taken to ensure that the parent form cannot be closed,
leaving the child form hanging around. The easiest way to do this with a non-modal child form
is to link the child form to the parent form via a property of the parent form, so that destruction
of the parent form destroys the child form. Create a new property of the parent form, something
like oChildForm, and then launch the child form with a line of code like this:

DO FORM <childForm> NAME ThisForm.oChildForm LINKED

Running the child form in this way, using the NAME...LINKED keywords, allows the
parent form to call the methods and set the properties of the child form if necessary. It also al-
lows the child form to be closed programmatically, and causes the child form to be destroyed
automatically when closing the parent form.

| prefer to have all of my forms use a private data session, but have successfully used the
"private parent, default child" technique described above. If | have two forms that must share a
data session, another technique | use is to pass the parent form's DataSessionID to the child
form as an argument, and the Init() code of the child form then sets its DataSessionID to match
that of the parent. Just as with the technique of setting the child form's DataSession to "1- De-
fault", the tables are opened and closed by the parent table, and thus can leave the child table
without any tables to work with if the child table isn't modal. In addition to the technique illus-
trated above, setting the DataEnvironment.AutoCloseTables property to .F. in the parent form
also prevents this problem. If the child form isn't running, the tables are closed anyway when
the parent form's destruction also destroys the data session.

In general, | haven't found too many uses for FormSets, given the availability of page-
frames, and now with the inclusion of scrollbars in VFP 6 forms, formsets in my opinion have
even less utility. However, they are very well suited to sharing data sessions between different
forms. The problem is that it isn't possible to get any form in a formset to behave as a modal
child form—even if the formset is modal, all forms within the set are active, and the user can
switch freely between the forms within the set.

Making the modal/modeless decision at runtime

While most of our forms are modeless, a modal form in the right place at the right time can
really do the trick. For instance, if you have a "Search" or "Filter" form, it doesn't make much
sense to allow the user to return focus to whatever form called the Search or Filter form until
they've either made their choices or canceled the operation.

However, not all forms fall easily into either the modal or modeless category. If | have a
search form that allows me to search and narrow down the list of all customers by name, sales
volume, territory, zip code or last activity, and | call this form from the form that allows me to
edit customer information, | want it to be modal. This forces the user to either select a cus-
tomer, who'se ID is passed back to the calling form, or to cancel the search, in which case the
user is returned to the calling form in its previous state. On the other hand, If | launch this



6 Effective Techniques for Application Development with Visual FoxPro 6.0

search form from a menu pad that says "Customers", allowing the user to select a customer and
then launching one of several customer-oriented forms based on that selection, | want the
search form to be modeless. How can | make the form modal in one situation but modeless in
another?

The WindowType property is indeed read/write at runtime, but take care when changing
this property. When a modeless (WindowType = 0) form is run, any lines of code following the
DO FORM command are executed after the form is instantiated. By contrast, when a modal
form (WindowType = 1) is launched, the instantiation of that form introduesst state This
means that the execution of the code following the DO FORM commanchoioeeecute until
the form is closed. If a modeless form is instantiated, and its WindowType property is changed
from 0 to 1 by calling the Show() method (by passing an argument of "1"), the wait state com-
mences with the execution of the Show() method. Thus you can instantiate a form, and then
immediately call the form's Show method to both make the form visible and change its Win-
dowType property:

DO FORM <FormName> NAME oForm NOSHOW
oForm.Show(1)

Doing this will introduce a wait state with the call to the Show() method. So far, so good.

However, sometimes it's necessary to have the form return a value using DO FORM
<FormName> TO <memvar>. In this case, an error will occur as soon as the calling routine
tries to make the form visible. Visual FoxPro expects the form to be modal when run with the
TO <memvar> clause, and in this case the calling routine executes another line of code imme-
diately after the form is instantiated.

The solution is to toggle the WindowType within the Init() or other method of the form
(called by the Init()), but to do so by changing the property directlynatioy calling the
Show() method. Remember, Show(1) introduces a wait state that is terminated only with the
destruction of the form. This puts us in a catch-22 situation: The form can't be terminated be-
cause one of its methods is executing. You've probably observed this when you suspended exe-
cution of a form method and then tried to release the form before canceling or resuming the
method. The form will usually become invisible, but you can't edit the form in the form de-
signer because the form hasn't been destroyed. Trying to force destruction of the form with
CLEAR ALL will trigger a "Can't clear the object in use" error. The object is "in use" because
code in one of its methods is still in the process of being executed (though it is currently sus-
pended).

Thus, depending on the circumstance, the proper method of making an otherwise modeless
form modal at runtime is to either use the Form.Show(1) method from the calling routine, or
toggle the WindowType property in the form's Init() method.

Continuing with the example of the search form mentioned above, the calling form passes
a self-reference to the search form, so that the search form knows that it should be run modally.
If its Init() method does not see a form reference passed, it doesn't change the WindowType
property, and it runs as a modeless form. This also has the advantage of allowing such a form,
made modeless at runtime, to return a value to the calling procedure. This can't be done when
setting the WindowType property to "1 - Modal" from the calling procedure—an error is trig-
gered as soon as VFP detects (by recognizing that the next line in the calling procedure is exe-
cuting) that you've executed a DO FORM...TO on a modeless form.



Chapter 9: Forms 7

Passing data between forms

As with procedures and functions, values can be passed to a form by launching it with argu-
ments that are received as parameters by the form's Init() method. As with procedures and
functions, a form (provided it's modal) can return a value to the calling routine. However, some
limitations to this process can present problems, particularly when multiple values need to be
transferred to or retrieved from a form:

« Entire arrays can be passed to forms by reference, but go "out of scope" as soon as the
Init() method code completes, necessitating transfer of the array data to a form array prop-
erty.

» Object (including form) array properties cannot be passed as arguments, nor can they be
returned as return values from the Unload() event of the form.

The solution to these problems is to stop thinking in the usual terms of "passing data." In
procedural programming, data is passed from one routine to another as arguments/parameters,
(dare | say it?) public or global memory variables, or as a value returned from a function call. A
common practice in Visual FoxPro is to call a method of an object, or instantiate an object and
pass data to it via an argument: DO FORM <whatever> WITH <some value>. If it's necessary
for the form or the function to handle a set of data, an array is passed by reference, which has
the added benefit (for a function, anyway) of allowing the function to return multiple values in
the array.

Why be limited to this way of passing data when working wfiject® After all, an object
can contain a virtually unlimited amount of data (of any type) in its properties. Some folks have
suggested creating a "wrapper" procedure that establishes a private array that is scoped to the
procedure, and therefore to any form the procedure calls. Others have suggested passing an
object containing an array property to a form instead of an array. The form can then store a
reference to the passed object to a property and manipulate the array property; and the calling
routine (which passed the reference to the object) can then retrieve the values from the array
after the form runs. When working with forms, however, the "middle man" can be eliminated
by simply passing a reference to the calling form, and allowing the called form to manipulate
the calling form's properties directly.

Going back to the search form mentioned previously, one might execute a line like this in a
customer editing form launching the search form:

DO FORM CustSearch TO ThisForm.cCust_ID

This is okay, as long as the desired result is a single value. However, if you need a series of
customer ID's that can be navigated through using VCR-style buttons, it would be possible to
do this:

DO FORM CustSearch WITH ThisForm

And the CustSearch form can store a reference to the customer form to one of its properties.
Now, the user can use the CustSearch form to filter the list of all customers to only those in
Cleveland, and select the customer that showed the largest volume of purchases for last year.



8 Effective Techniques for Application Development with Visual FoxPro 6.0

When the user is finished, the CustSearch form can manipulate several properties of the Cus-
tomer form. In this way, the information that the CustSearch can "return" is not limited to just
the cCust_ID of the best customer in Cleveland. The CustSearch form can set a property of the
calling form that indicates the number of customers in the subset the user selected (those in
Cleveland), set another property of the calling form to indicate the Customer ID of a single
customer in the subset, and populate an array property of the calling form with the customer
ID's of all the customers in the subset. The calling form can then use this information in navi-
gation methods and related objects to allow the user to "browse" or examine in sequence the
customers in the subset.

How about the situation where I'm actually launching Form "B" from Form "A," and |
want to pass some god-awful complex set of information to Form "B"? Yes, | could pass a
whole bunch of parameters, or even some kind of specialized object. On the other hand, my
launching code could look something like this: (Note that this contradicts some of what I've
said previously, but read on.)

DO FORM <FormName> NAME ThisForm.oFormLaunched
ThisForm.oFormLaunched.cCust_ID = ThisForm.cCust_ID

DIMENSION ThisForm.oFormLaunched.aCustList[ThisForm.nCustomers]
ACOPY (ThisForm.aCustList, ThisForm.oFormLaunched.aCustList)

As I'm sure you noticed, this code represents a couple of pretty tightly coupled forms. Ma-
nipulating a form's properties requires a lot of knowledge about that form. However, this is the
kind of thing that could be built into the foundation classes or application framework, so that
the properties being manipulated, or the methods being called, are not unique to a single form,
but part of every form of a particular type in the system.

Our technical editor expressed interest in an example of building inter-
form communications techniques into a framework. Rather than bore
you with a bunch of code, | thought I'd explain one approach I've used

for an application.

The situation was the need (as in the text) to allow the user to select a subset of
patients, or patient families, or services, or any other large set of records in a
health-care facility application, and then navigate through the resulting list using
VCR-type navigation buttons. Because this application would be installed as a cli-
ent/server application at some sites, all data manipulation had to be done using
views. In a C/S app, pulling up a list of all 10,000 patients in a picklist is something
to be discouraged; however, navigation through a reasonable subset was part of
the application’s spec.

All data-aware forms in the framework have two properties to support this func-
tionality: oNavList and a property to hold the key value for the current record,
uKeyValue. The framework also includes a composite object, cntNavButtons,
which includes the four VCR buttons, a label that indicates the number of items in
the subset, and an array property to hold the ID's of the items in the subset. The
cntNavButtons object also has the four navigation methods GoNext(), GoPrev(),
GoFirst() and GoLast(), and a couple of numeric properties, nCurrentinList, to act



Chapter 9: Forms 9

as a "pointer” to the currently selected item, and nLastinList to indicate the total
number of items in the list. The navigation methods manipulate the nCurrentinList
property, enable and disable the VCR buttons depending on the position within the
list, transfer the record ID from the array to the form's uKeyValue property, and call
the form's Requery() method to requery the current views.

The Init() method of cntNavButtons "registers" the VCR-button object with the form
by storing a self-reference to the form's oNavList property. When the user wants to
launch the (modal) search form, the foundation data-aware form class's Search()
method executes the search form:

DO FORM PatSearch WITH This TO ThisForm.uKeyValue

The search can simply return a single value through 'its Unload() method. It
checks the passed calling form to see if it has a non-null object oNavList property.
If not, it simply passes the user's selection back to the calling form's Search()
method via the search form's Unload() method. If the calling form does have a
non-null object oNavList property, the search form also stores the ID's of the sub-
set to the array property of the calling form's oNavList object, sets the oNavList
object's nLastInList and nCurrentinList properties, and sets returning the ID of the
currently selected item in the list via the Unload() method.

As pointed out in the text, these forms are very tightly linked. However, this is tol-
erable because the knowledge that each form requires of the other is not unique to
each form instance but to the form classes, which are common throughout the ap-
plication. Thus, while the forms are tightly coupled, they are loosely coupled within
the context of the application framework.

Other issues with private data sessions

One somewhat bothersome thing about private data sessions is that a bunch of environmental
settings are scoped to the data session. This means that any settings you have established glob-
ally, such as SET TALK, SET DELETED, SET NEAR, and so on, immediately revert to their
default values as soon as a form with a private data session is instantiated. As a result, the de-
sired settings must be re-established for each form instance. (See the VFP help file entry for
SET DATASESSION for a complete list of all data session-scoped settings.)

The brute-force approach is to simply SET TALK OFF, SET DELETED ON, and so forth,
in the Init() or the Load() of each form. This requires you to remember to include all settings
that are needed for each form, and place the needed code in each form. A better, and more ob-
ject-oriented way, is to establish all preferred settings in a form foundation class (say, in the
LOAD() event method, then simply issue a DODEFAULTY() in each form and override any of
these new "default" settings as needed.

A very popular approach (which | use) is to create an object class that handles this chore,
and to drop an instance of this object onto the data-aware form foundation class. This approach
relies on the automatic execution of the Init() and Destroy() event methods. The Init() event
method calls a Set() method, which stores the current values, and by reading its own object
properties, sets each environmental setting to the desired value. The Destroy() code can option-



10  Effective Techniques for Application Development with Visual FoxPro 6.0

ally call a Reset() method to restore all settings to their original values. This is useful when the
object is used to set environmental settings in the default data session. The object classes | use
for manipulating environmental settings are slightly adapted from the ones presented in the
Visual FoxPro 3.0 Codebodly Y. Alan Griver. Just to give you a taste of how these work,

Listing 9-2 shows a few lines of code that the cSessionEnvironment object executes in its Set()
method.

Listing 9-2 . A piece of the cSessionEnvironment.Set() method.

IF EMPTY (this.cCentury)
SET CENTURY OFF
ELSE
luTemp = this.cCentury
SET CENTURY &luTemp
ENDIF

IF This.nCenturyTo =0
SET CENTURY TO
ELSE
IF This.nCenturyToRollover = 0
luTemp = LTRIM(STR(This.nCenturyTo))
SET CENTURY TO &luTemp
ELSE
luTempl = LTRIM(STR(This.nCenturyTo))
luTemp2 = LTRIM(STR(This.nCenturyToRollover))
SET CENTURY TO &luTempl ROLLOVER &luTemp2
ENDIF
ENDIF

If you create applications for many different clients, you might want to subclass this type of
object class, setting your preferences in the subclass. On the other hand, if you are a corporate
developer, you might prefer to include your preferred settings in the foundation class. Either
way, overriding these settings for a particular form is no problem. Since the object in the form
is an instance of the cSessionEnvironment class, you can simply change the settings by adjust-
ing the properties in the object instance on the form that needs something set differently.

Because this object is always the first object on the form (since it's added in the form foun-
dation class), its Init() and Set() methods always execute before any other control is instanti-
ated, so the new settings are in effect when the rest of the controls show up for work. However,
realize that dot of stuff happens before the environment-setting object instantiates, some of
which is affected by the settings that are manipulated via the environment-setting object.

Here is the sequence of events that occur when a form that uses the DataEnvironment is
launched:

DataEnvironment.OpenTables()
DataEnvironment.BeforeOpenTables()
Form.Load()

Cursor.Init()

DataEnvironmnent.Init()
FirstObject.Init()

Form.Activate()

Nogokrwhr



Chapter 9: Forms 11

8. Form.Paint()

Note that at the time the cSessionEnvironment object instantiates, all objects associated
with the data tables and their setup are up and running. The cSessionEnvironment is instanti-
ated at event 6 in the list above. To show the effects this can have, consider two settings: TALK
and DELETED. TALK defaults to "ON" and DELETED defaults to "OFF". If you have a view
that is being opened in the data environment, these default values are in effect. This means that
the query will not ignore deleted records, and the message "Selected x records in .028 seconds"
will appear either on the status bar if STATUS BAR is set ON, or on the VFP desktop if
STATUS BAR is set OFF.

In the case of the views and deleted records, the solution is to make sure you always set the
NoDataOnLoad property to .T. and REQUERY() the view from the form's Init(), or, alterna-
tively, set AutoOpenTables to .F. and call the OpenTables() method from the Form.Init().

The problem with the TALK setting is not as simple. Actually, with the status bar set ON,
it might not be an issue (the user might not even notice the message), but if your application
doesn't use the status bar and it's turned off, then the only work-around is to issue a SET TALK
OFF in the BeforeOpenTables() method. Unfortunately, this must be done in each form. It still
isn't possible to subclass the data environment where you could employ the SET TALK OFF
command and have your forms use this user-defined DataEnvironment class rather than the
standard VFP DataEnvironment class. You might be tempted to instead add the environment
setting object via the form's Load() event method, which works fine and does indeed get the
environmental settings in effect a little sooner, but not soon enough for these two issues—the
tables are already open when the Load() fires.

To form or not to form—running forms as object in-

stances
There is a school of thought that says forms should be instantiated from a class, using
CREATEOBJECT() rather than using DO FORM. The arguments in favor of this line of
thought make some sense. For those of us who tend to be a bit purist in our thinking when it
comes to object-oriented programming, it just seems to be the "right" thing to do. Everything
should be stored as an object class and instantiated at runtime. It encourages us to design our
forms in a manner that allows more opportunities to subclass the forms and to specialize their
functions.

This last argument becomes greatly compelling when you've just completed the last of
three or four complex forms that have almost identical features and functionality. Running
forms as forms rather than as object instances certainly doesn't preclude creating a form class
that provides certain common features that are then specialized either in a subclass or in the
form instance. However, if you get into the habit of basing all forms directly on foundation
classes rather than specialized form classes, you can miss opportunities to really take advantage
of the power of object-oriented programming.

Despite the "purity" and "rightness" of doing so, many believe that the disadvantages of
designing forms as classes rather than form instances outweigh the advantages.

The greatest disadvantage of running forms as object instances is the fact that form classes
do not have a DataEnvironment object. Because you still can't work with the DataEnvironment
object class the way you can most other baseclass objects, and can't add a DataEnvironment



12  Effective Techniques for Application Development with Visual FoxPro 6.0

object to form classes in the Form or Class Designers, it becomes necessary to programmati-
cally add a DataEnvironment object, or to programmatically open all necessary tables and sup-
porting files at runtime. While this isn't really that big a deal, it does mean that you give up the
ability to create drag-and-drop form controls from the form's data environment, and the prop-
erty sheet picklists for each control's ControlSource property are empty.

Some would argue that the necessity of programmatically adding a DataEnvironment ob-
ject or its equivalent is a strength of running forms as class instances rather than as forms, be-
cause it rewards developing a subclassed version of the DataEnvironment that can provide far
greater functionality than the native DataEnvironment object. However, this is not precluded by
running forms, as you can see from the ideas presented in Chapter 7.

In the final analysis, making a decision to run forms or objects instantiated from form
classes is influenced by a number of things. There is no "right" or "wrong" answer to this ques-
tion, but here are some factors that are likely to influence your decision:

e The experience and skill level of the programmers working on the project. Forms are a
little easier to learn to use because they include the data environment, and they're a little
easier to run, test and debug. Instantiating forms from form classes is a bit more complex,
often aided by builders for creating data environments or adding data manipulation classes,
and may have a "deeper" class hierarchy, making it more difficult for the novice VFP de-
veloper to understand and adopt.

* The need to access more than one type of data source. Instantiating forms from object
classes is sometimes done as a consequence of the need for more flexibility in the type of
data environment and data manipulation classes that must be defined at runtime. Some de-
velopers, once they've decided to chuck the Visual FoxPro DataEnvironment, decide that
there is little reason to recommend forms over form classes (although Chapter 7 shows that
you can have your cake and eat it, too!).

» The scope of the foundation classes. Foundation classes can be developed for use in a sin-
gle application or a uniform corporate development environment, or might be intended to
eventually form the basis of a more robust and broadly applied application framework.
Again the considerations involve ease-of-use, flexibility and adaptability, as well as the dif-
ficulty a new user might experience in learning to use the foundation classes.

» The personal preferences and inclinations of the developers working on the project. Some
of us think instantiating from form classes just "feels right" and enjoy the challenge of
pushing the envelope, while others prefer to use the tools as Microsoft has provided them.

Forms and delegation
As I've learned to create applications in Visual FoxPro, I've gradually learned the importance of
delegating functionality to the appropriate object. This usually means delegating responsibility
to form methods rather than performing complex tasks in control methods.

You should see many "red flags" when a certain pattern appears in your programming.
Here are some that are commonly cited:

« A segment of code indented five to seven levels deep, indicating numerous nested
IF...ENDIF and DO CASE...ENDCASE control structures—an indication that the code's



Chapter 9: Forms 13

logic is overly complex, and could possibly be simplified by moving some of the logic into
smaller, more concise methods.

e Overriding a class method without issuing a DoDefault()—an indication that perhaps some
functionality in the superclass really belongs in a subclass.

* Along list of 10 or 12 arguments to a method or function—an indication of a tightly cou-
pled routine.

« Aroutine (function, procedure or method) structured as a single DO CASE, each CASE
testing the value of a single parameter and then executing a large block of code depending
on the value of that parameter—evidence of a routine that is possibly logically cohesive
but should be broken into several appropriately named methods or routines, one for each
CASE condition.

Similarly, in an object-oriented language like Visual FoxPro (and other object-based tools like
Access and Visual Basic), a red flag should go up any time you see more than three to seven
lines of code in a control method. I'm not referring here to method code in a control class. The
method code in a reusable control class can often be quite complex. However, the programmer
should recognize the limited role of a form control.

A form control performs two functions. The first is to present a single piece of information,
or a set of related pieces of information. The second is to act as a locus of interaction between
the user and the form.

Consider a knob on a radio. You can tell from the position of the red line engraved on the
knob the approximate frequency to which the radio is tuned. You can also grasp the knob, and
by turning it, change the station you're listening to. Does the knob actually change the fre-
guency that the circuitry is tuned to? No, it's just a beige plastic thingy that is attached to a
metal shaft that is in turn attached to a variable capacitor that actually does the tuning. The
knob gives us a discrete piece of information and allows us to indicate our wishes. The knob is
not responsible for carrying out our wishes, only for conveying our desire to the component in
the radio that is designed to act on our desire to listen to the news instead of some R & B. The
garage door opener on my sun visor is not responsible for actually opening the garage door. It's
a control that is only responsible for conveying my desire to open or close the door to the de-
vice designed to receive that request. Neither is the receiver responsible for moving the garage
door. It delegates that responsibility to the opener itself, simply sending a signal to the opener
to say "HEY! Open the Door!"

Similarly, in our forms, the Save button shouldn't have 50 lines of code in 'its Click() event
method that loops thugh all of the work areas and executes a TableUpdate() on each one. It
should, instead, simply have a single line that says:

ThisForm.Save()

As another example, a text box that is used to enter an order number should not have a
bunch of code in 'its LostFocus() method for establishing a view parameter and executing a
REQUERY(), or selecting a work area and performing a SEEK(). The LostFocus() method
might contain some check to see if the user has keyed in a new order number, and if so, it calls
a Requery() or LookUp() method belonging to the form.



14  Effective Techniques for Application Development with Visual FoxPro 6.0

There are several reasons that the amount of control method code should be kept to a
minimum. First, while initially it may seem that a certain block of code should only be executed
in response to thisneevent, it quite often turns out that there are several events that need to
trigger execution of this block of code. There's no law that says these other events can't call the
method of the control, but remember that method names should bear some resemblance to the
functions they perform. If the Save function is being performed by a Click() event method, and
a LookUp function is performed by a LostFocus() event method, it can be a little difficult to
find the code that performs a particular task.

This leads to another argument in favor of delegating important operations to form meth-
ods. When an application is in need of modification, it becomes a simple matter to open a form
in the form designer, go to the methods page of the property sheet, and have in front of you all
methods that do the "real work" of the form. This is especially true if you opt to display non-
default properties only. You might need to do a search to determine which events are triggering
which methods, but at least you have a list of all methods that accomplish the work of the form.

Another delegation issue argues against a lot of chit-chat back and forth between controls.
A control might enable or disable another control based on its own value. However, if you see a
long list of controls being enabled or disabled, it's likely that this function would be better dele-
gated to a form method. If you have a control method that is enabling or disabling a whole set
of controls, depending on the value of several controls, | can almost guarantee that you'll make
your life much easier by moving this functionality to a form method. The form method can then
be called from any event that indicates that some state has changed.

The issue of enabling and disabling controls is an opportunity to look at another mistake
that | have often made. While it might be logical to have a form method that determines the
"state" of the form and manipulates the appearance of specific controls in response to the cur-
rent state, this kind of thing becomes difficult to maintain as controls are added or removed
from a form during development. Why not make each control responsible for ‘its own state? (I'll
discuss this further in Chapter 11.)

Again, this is a matter of delegating responsibility to the proper object. While this chapter
is about forms, not about controls, it's just as important not to overload our forms with tasks
that are more easily and properly performed by the controls. The principle here is to look
around and ask, "Who can | make responsible for this job?" In a way it's like being the ultimate
dictatorial boss or supervisor, with perfect mindless little employees working for you. You can
delegate responsibility to anyone you designate, knowing that they can't file a grievance or
complain toyour boss. They'll do whatever job you decide it's best that they do. If you decide
that one employee (object) is doing too much, and needs too much of your attention to make
sure that they do their job properly as conditions change, you can distribute their responsibili-
ties among other objects that can better adapt to changing conditions, and keep the "factory"
turning out widgets.

Forms as business objects
If you ever do any reading on the subject of object-oriented analysis and design, you'll be con-
fronted with a great deal of discussion ablouginess objects

In an object-oriented software system, real-world things are modeled in the software. The
things being modeled are the objects that are part of the business and what it does. These things
can be employees, orders, products, customers, invoices, credit memos, purchase orders, pick



Chapter 9: Forms 15

tickets, time cards, patients, physicians, vendors, production lines, and on and on. In many ob-
ject-oriented systems, an attempt is made to define all of these various objects and the ways in
which they interact in the context of the business or enterprise. In order for the software system
to function properly, it must accurately model the enterprise it is used to manage.

Each object in the system must have behaviors that accurately mimic those real-world ob-
jects they model. The various objects must interact with each other in the same manner as those
in the enterprise being modeled. In modeling real-world things as business objects, the desire is
to encapsulate all behaviors of the real-world thing in the software object. Keep in mind that
there is often a tangible, visible aspect to the real-world objects, just as there can be for the
software objects that model them. However, there are other intangible and invisible aspects to
both the real-world and software objects.

Let's consider, as an example, a specific company's invoice. The tangible, visible aspect of
an invoice is a piece of paperdacumenjton which is listed all information pertinent to the
invoice: the customer, the terms, the date, the purchase order number, the total, and an itemized
list of the items the invoice covers.

However, an invoice could be only one aspect of another, more abstract concept. For a
business in which there is a one-to-one relationship between orders and invoices, there are (at
least)two documents, or real-world objects, that represent a different aspect of what could be
viewed as the same thing, that could be referred to perhapsaasaction The order form
represents a transaction from the time it is received by the company to the time that the goods
have been shipped or the services delivered. The invoice represents the same abstract idea, but
reflects the information needed by the company to inform its customer of the amount due for
the goods or services, and the information the customer needs to process the invoice for pay-
ment. There might be other documents that reflect a different aspect of this transaction. For
instance, a job ticket or pick-list might provide information that the folks on the shop floor need
to properly fill the order.

Each document mentioned thus far could have a different set of information that is of inter-
est to the various departments in the company and to the customer. This is illustrated in Table
1.

Table 1. A hypothetical industrial products company and various documents related to
a "transaction", and who might have an interest in each.

Document = Company Departments Customer Departments
Order Form | Sales, Customer Service None
Job Ticket Production, Shipping, Quality Con-Engineering

trol
Shipper Shipping Receiving, Production
Invoice Accounts Receivable, Sales Accounts Payable

As shown in Table 1, an order form contains very little information of interest to the customer,
but is of significant interest to sales and customer service. You could add an additional docu-
ment called an "acknowledgement" that would be of interest to the customer's purchasing de-
partment. Similarly, an invoice is of no interest to the production department, but life revolves
around the invoice for the accounting departments of both the company and its customers.



16  Effective Techniques for Application Development with Visual FoxPro 6.0

So what you have are a bunch of documents that you might be tempted to implement as
separate forms in your application. However, they are really only different views of the same
thing—the transaction from buyer to seller. If you can create an object that encapsulates all
behaviors of this transaction-thing, you've done much of the work required by the five (or
more) documents listed above. Such an object, when modeled in software, is referred to as a
business object

It is possible that a particular business needs only one user interface for this type of busi-
ness object—one that allows order entry and displays the status of the order, from receipt to
fulfillment and shipping, to invoicing, to payment.

There has been considerable discussion of creating reusable business objects with Visual
FoxPro. Some frameworks have even incorporated the concept of the business object into their
design. However, in most object-oriented systems, the business object is a non-visual entity that
abstracts the behaviors and relationships but delegates user interaction with the object to an-
other component in the system. The reasoning is that (to continue with the example above) a
"transaction-thing" object does not have, as part of its properties or behavior, a text box to dis-
play the name of the customer. The customer placing the order is, indeed, a property of the ob-
ject, but it is incorrect to assume that all instances of the transaction object will require user
interaction, and therefore require a text box to display this information on-screen.

To implement this type of business object in Visual FoxPro, you would create an object
class based on the Custom baseclass, and add properties and methods as appropriate to model
the behavior of a transaction for this company. However, you'd like to drop the resulting object
onto an "Order" form, or a "Job Ticket" form, or an "Invoice" form, add the necessary interface
elements and be done with it. However, we're talking about database applications here, and an
integral part of such an application is the data that allows us to refepézificinvoice, or
order, or job ticket. The elements provided by Visual FoxPro to abstract this part of a business
object—DataEnvironment and Cursor objects, and the private data session—can't be contained
by any object other than a form.

Ideally, you would have DataEnvironment objects that could be added to objects based on
baseclasses other than forms, and you would be able to create objects that could declare a pri-
vate data session, just as you can with forms. You could then create abstract, non-visual busi-
ness objects as described above, and leave the interface to forms to which you add these busi-
ness objects. However, you don't have those capabilities. Do you give up on the business object
idea? Not on your life.

To do some really slick things with business objects in Visual FoxPro, you just need to
change your perspective slightly and use some of VFP's tools.

What follows is a description of a business object | created for an application. It demon-
strates how you can use a form as a business object without being constrained by the fact that a
form is usually a visible application component intended to interact with a user. As in the ex-
ample above, this object is a transaction object, and needed to perform the following tasks:

« Display an order-entry and credit-entry interface.

» Display an order-fulfillment interface (for the warehouse and shipping department).
*  Print a shipper.

* Post the order.

e Un-post the order.



Chapter 9: Forms 17

* Print an invoice.
* Update inventory.
« Update sales history.

| decided to "go with the flow" and just make this transaction object a form. | added meth-
ods to allow this transaction object to perform each task and interact with all required data. |
then created two different interfaces for the form, each on a different page of a borderless, ta-
bless pageframe. By passing an argument, | could select either of the two interfaces when the
form was instantiated. In addition to these two "modes" of operation, | allowed a third mode.
This third mode caused me to begin thinking about using a form as a business object in the first
place.

Normally, transactions are called up using one of two methods. One is to pass the transac-
tion number (on order number, an invoice number or a credit memo number) as an argument
from another form that displays a list of open/completed/invoiced transactions. Another is to
run the form and key the transaction number into a text box. In either case, the identifying
transaction number is stored to a form property, and a form Requery() method is called, which
requeries the necessary views so the transaction can be displayed or edited. If the Requery()
method is unable to find any records matching the transaction number, it raises a dialog box to
inform the user. After adding a new order or saving edits to an existing transaction, a WAIT
"Saved..." WINDOW NOWAIT confirms to the user that the save was successful. As always, a
failed save results in a message box informing the user of the failure and explaining the prob-
lem.

One function of this transaction object is the ability to post (or "un-post") an individual
order, which is sometimes necessary. The process of posting changes the transaction from a
pending transaction into an invoice or credit memo, and updates the product inventory to reflect
the transaction. However, this company usually posts its orders in "batch" mode, once per
week. Rather than writing a separate procedural program to perform this task, | used the Post()
method that is part of the transaction form/object.

To implement this, | createdthird mode of operation, which | call a "silent" mode. If the
form is called witmo arguments, the Init() sets the ISilentMode property of the form, and es-
sentially does nothing further. | also added a RetrieveTxn() method, which does what is nor-
mally accomplished by entering a transaction ID into the text box, or passing it as an argument:
It accepts this ID as an argument, stores it to the appropriate form property, and calls the form's
Requery() method. | refer to this as a "silent" mode because the Requery() method does not
raise any error dialogs if the transaction ID can't be found, but simply returns a logical value
indicating success or failure back to the RetrieveTxn() method, which in turn returns this value
to the process that called RetrieveTxn().

Now, here's all you need to do:

Compile a list of transactions that are ready for posting.

Instantiate the transaction form objedthout making it visible.

Pass each transaction ID in turn to the non-visible transaction form object.

If the transaction form object successfully retrieves the transaction, call the Post() method
of the transaction form object.

PwbhPE



18  Effective Techniques for Application Development with Visual FoxPro 6.0

The transaction form object is instantiated as a non-visible object using the following syntax:

DO FORM frmTxn NAME loTxn LINKED NOSHOW

The NAME...LINKED keywords cause the form to be instantiated to a specified memory vari-
able. The NOSHOW keyword allows the form to be instantiated without being made visible.

The Post() method automatically calls the Save() method. If the Save() is successful, Post()
returns .T. If the Save() is unsuccessful, the Cancel() method is called (to clear the buffers of
changes made by the Post() method), and Post() returns .F.

Thus it's possible to create another form or procedure that compiles the necessary list, in-
stantiates the transaction object, asks the transaction object to retrieve each transaction in the
list and then post each one, keeping a tally of successful and unsuccessful posts. Because the
Save() method of the form already wraps any changes in a TRANSACTION...END
TRANSACTION/ROLLBACK, the half-dozen or so tables that are modified by the Post()
method are committed in an all-or-nothing manner.

Listing 9-3 shows (in pseudo-code) a summary of this entire technique.

Listing 9-3 . Pseudo-code illustrating the use of a form as a business object.

* Init() Method
LPARAMETERS tcTxnNo, tcinterface
IF PCOUNT() =0
Store .T. to ThisForm.ISilentMode
ELSE
Store tcTxnNo to ThisForm.cTxnNo
Store tcInterface to ThisForm.clnterface
If Requery() retrieves a record
Check ThisForm.clInterface —
(Activate Pagel of page frame if it's "ENTRY", ;)
Or Page? of the page frame if it's "FULFILL"
ENDIF

* RetrieveTxn() Method
LPARAMETERS tcTxnNo
Store tcTxnNo to ThisForm.cTxnNo
Call ThisForm.Requery()
If Requery() retrieves a record
RETURN .T.
Else
RETURN .F.
ENDIF

* Post() Method
Determine if the transaction is a credit and if the business
rules permit issuance of the credit at this time
Change status of transaction from pending to posted
Calculate due-date based on terms and posting date
Update the customer's sales history to reflect the sale or credit
Update the inventory records to reflect the items being sold/returned
Save() the changes
If Save() is successful RETURN .T.
If Save() is unsuccessful call Cancel() and RETURN .F.



Chapter 9: Forms 19

PROCEDURE BatchPost
DO FORM frmTxn NAME loTxn LINKED NOSHOW
SELECT cTxnNo FROM TxnHeaders WHERE complete INTO ARRAY laTxnList
LOOP through the array
IF loTxn.RetrieveTxn(laTxnList[i]) ;
AND LoTxn.Post()
Record the success of the posting
ELSE
Record the failure of the posting
ENDIF

Hopefully this discussion has shown how forms can be used as business objects, and how
they can fulfill all of the requirements of business objects.

« Encapsulation of all business object behaviors into a single object.

» Separation of interface from the business object and the business logic it enforces.

« Utilization of the business object by other procedures and processes that need to rely on
the business object's knowledge of business logic and rules, but have no need of any of the
business object's user interfaces.

Passing parameters in form methods

You might have noticed in the previous section how data (e.g. the transaction number) is stored
to a form property, and then another method is called. This called method then uses the data
stored in the form property to perform its assigned task. It would be possible to pass this piece
of data from one method to another as an argument, and for the called method to receive the
data as a parameter. However, I've found it tmbehbetter andnuchmore flexible to rely on

form properties to pass data from one method of the form to another.

Keep in mind that you are trying to encapsulate a set of methods and related data. If you
pass data as method arguments, the data is not visible to all methods of the form—it is scoped
to only the calling and called methods. The very fact that this data is of interest to more than
one method is an indication that this piece of information should be stored in a form property.
If two methods have an interest in this piece of data, there is a very good chance that a third
method will eventually have an interest in this data. If you find yourself adding an
LPARAMETERS command to a form method, you should immediately stop and ask yourself,
"Is this method exposed to, or will it be called from, objects outside this form?" If the answer is
"No," you should probably create a new form property to share the data between the calling
method and the called method. In this context, look at passing an argumenpéerzad tech-
nigue that might be suitable for some unusual circumstance, miefdgttechnique that you
use out of habit.

In procedural programming, we've long been used to using parameters to achieve loose
coupling ("black boxing") of a function or a procedure. However, in an object-based or object-
oriented language, you're "black-boxing" titgect not the object'methodsBecause the
methods and properties are inseparable from the object (that's part of whatonbggstulation
is), it's not that much different, conceptually, from establishing a memory variable at the begin-
ning of a function that is referenced in several different control structures within the function.

I'm going to embarrass myself by telling you just how long this simple Truth has taken me
to embrace. I'll frequently look at code I've written as recently as a few weeks ago in which I'm



20  Effective Techniques for Application Development with Visual FoxPro 6.0

slavishly passing arguments from one form method to another. If you've been doing procedural
programming as long as | have, it is indeed hard to break old habits and old ways of thinking.
However, you will paint yourself into far fewer corners if you start employing simple practices
such as this.

This chapter has taken a look at the form itself, rather than the controls that you place on
the form. The next two chapters will dig down and talk about the form controls.



