
Chapter 14: Wombats and Eggs 135

Chapter 14
Wombats and Eggs

A few weeks later, the Menu Builder was finished, but then I had a
new problem.

I entered Heindel’s office, and after the usual “Hey Heindel-man”
greeting, I got to the heart of the matter. “Dave wants me to add
multiple windows to READ,” I said. “I was hoping you could give me
some advice.” Heindel had his desk positioned so he faced the door. I
walked left to stand near the end, next to his black guest chair.

Heindel’s face tracked me as I moved. At the word “READ” his
cordial expression suddenly turned sober. “Be very careful,” he said.
“And don’t break anything.”

I shook my head. “Thanks,” I said flatly. At times, Heindel had
the wit of a first-grader.

Heindel turned back to study his computer screen. “Don’t
mention it,” he said. He then squinted at the screen as if the
conversation was over.

There was a stuffed Cleveland Browns football placed prominently
on Heindel’s desk. I contemplated whether whacking another employee
aside the head with it would be against company policy. Probably not.

Heindel turned back to look at me and chuckled. “I’ll give you a
walk through of the code for READ, but I warn you, it ain’t pretty.
And be prepared—every time I touch that code, I break something.”

“Really?” I asked, easing myself into the guest chair. Why can’t it
ever be easy? The chair caught on the carpet. I fought to bring it closer
to Heindel’s desk.

“Really.” Heindel cupped a hand and jerked it forward in the air as
he talked; one jerk for each point. “Try as you might, no matter what,
if you change anything, somewhere, somehow, someone’s dBASE
program won’t work right anymore.”

Not what I wanted to hear. “Well...I don’t know if I want to….”
He tried to reassure me. “You’re the creator of the Screen Painter,

you can do it. Just be prepared to test. A lot.”
Great. What have I been thrown into now…?

 * * *

136 FoxTales: Behind the Scenes at Fox Software

Though only a single command, READ was one of the most intricate
and convoluted commands in our product. The purpose of READ was
to animate an interface. A user, when creating an application’s
interface, typically defined different elements of it using a list of
@SAY/GET commands. At the end of the list, they would issue a
single READ command to make the whole thing live. A simple
interface program written in the dBASE language might look like this:

USE dvds
@3, 13 SAY ‘Title:’ GET dvds.title COLOR gr+b, r/w
@4,13 SAY ‘Description:’ GET dvds.description COLOR gr+b,
r/w
READ

This program makes use of a database (dvds) created to hold an
inventory of the DVDs I own. When run in FoxPro, it would present a
blank screen with the string “Title:” on one line and next to it a
rectangle of text that displays the actual title of one of the DVDs in my
collection. The string “Title:” is the SAY portion of the command in
action and the title presented is the GET portion. The user of the
program could change the value presented in the GET portion. Directly
beneath the “Title:” line would be a similar line for “Description:” and
a corresponding changeable (GET) rectangle of text next to it.

That is an example of the interaction READ allowed. It also
allowed for more complex interface elements, like push buttons, radio
buttons, and checkboxes—the sort of things anyone who uses a
computer interacts with regularly.

My initial naive assumption was the code to implement the READ
command would be relatively straightforward. All it had to do was
handle the interaction of a few interface elements. We had code in our
Control and Dialog Managers doing similar things and it was all
accessible to me. Easy to read, easy to understand…it didn’t take much
studying of the code to comprehend—at least in part—what was going
on. I could even make a change if necessary. I couldn’t imagine READ
being that different. How bad could it be, really?

Heindel’s initial walkthrough hinted at an answer and a short while
later—when I was sitting in my office with the code for READ printed
out—I knew for sure.

The answer was “really bad.”
In my courses at college my instructors drilled into my head the

proper steps to follow in writing—what they called—“structured
code.” At the time, some of the rules they gave me seemed a little
overzealous. A few of the important ones went like this:

Chapter 14: Wombats and Eggs 137

1. A single subroutine (a small self-contained portion of code)
should essentially have one purpose. This is the programmer’s
version of “A place for everything and everything in its
place.” Create a routine to do one thing, and use it for just that
one thing. If you need it to do something slightly different,
write another routine.

2. Every routine should have only one entry point and one exit
point. This means as the computer makes its step-by-step way
through the code it should have only one place to begin a
routine and only one way to finish it. Just like reading a
book…you start at the beginning and end at the end. No
shortcuts. (Especially with this book!)

3. If you find yourself writing the same lines of code in a
subroutine more than once, you should create another routine
that consists of those lines of code and call it from the original
routine. This is essentially like speed dial on your phone. If
you dial a number regularly, you should probably put it on
speed dial.

4. Document your code. This means put comments around any
code you wrote to tell the next person what you were doing.
Anyone who has put together a child’s toy knows this one.
The better the instructions, the easier it is to understand.
For programmers, comments are the roadmap of another
person’s mind.

Unfortunately, the only thing READ had in common with this list
of rules was it didn’t follow any of them.

At an earlier time, Heindel gave me a way to maximize the amount
of C code I could get printed on a single sheet of paper—using a very
small font, it put out around seventy five lines of code per sheet. Even
printed that way, READ spanned nearly twenty pages of text. And the
code itself read like a horror novel.

It contained one huge decision structure (called a ‘case’ statement
in C lingo) with multiple entry and exit points and several looping
structures (constructs that tell the computer to do a section of code
repeatedly) that spanned all twenty pages. Nearly everyone who was
hired before me touched it (indicated by their initials near individual
lines of code—with no additional comments), but none of them would
ever claim responsibility.

The READ code was what my friend Rusty would call a “can of
wombats.” Now I was going to be right in the middle of it.

138 FoxTales: Behind the Scenes at Fox Software

 * * *

In the first version of FoxPro, a user could only define their interface
(@SAY/GET) elements in a single window. This behavior emulated
what FoxBASE+ and dBASE IV did, so there was no immediate
pressure for us to change it.

Neither of those products were really windowing environments,
though. dBASE IV allowed for the definition of windows, but the
primary interface of that product was still very much like its
predecessors. Each tool—their editor, their BROWSE command, their
Report Writer—were confined to a single screen and didn’t interact
much with the rest of their product.

FoxPro wasn’t like that. Our windows were sizable, they moved,
and they overlapped each other. Our tools lived inside windows of their
own. Having a READ command that didn’t allow our users to provide
their users with a similar experience just didn’t seem right. My mission
was to give them that ability.

Of course, feeling confident of my coding skills, I thought I could
clean up the READ code a little before I added the changes to make it
support multiple windows. In my first glimpse of the main READ
routine, I saw dozens of places where the exact same lines of code
were written. If I could break those places out into separate routines,
I’d not only get my feet wet in the ocean of code that made up READ,
but I’d help the code itself. Shrink it. Make it a little more structured.If
that worked out, I could press on to make it obey some of the other
rules of structural programming. When finished, READ would be a
concise, well documented—purely structural—routine. From there it
would be easy to plug in my multi-window changes.

So, that’s what I did. I created a few new routines to replace the
duplicate code and made the appropriate changes in the READ code to
call them. I built a new version of the product and did some testing.

READ worked fine. I was confident it would, though. The changes
I made were about as innocuous a change as could be made. Usually, if
your product will build with them in, they work. After a little more
testing, I checked in the first round of my new and improved READ.

 * * *

The next day Janet was at my door. “I’m seeing something weird,” she
said. “Come take a look at this.”

I followed her to her office. On her computer’s screen was a
relatively simple READ in action. It had a couple of database

Chapter 14: Wombats and Eggs 139

fields displaying their data in GET rectangles, some text, and a couple
push buttons.

“Now watch this…” she said. She proceeded to hit the tab key a
number of times. As she did this, the color of one GET at a time would
change to show it was the currently selected one. When she reached a
particular GET, instead of the entire rectangle changing color, a cursor
appeared within.

“Yeah?” I said.
Janet looked at me. “Well, yesterday that GET would be

completely selected. Today it is just showing a cursor. Heindel said
you were working on READ now so…”

I hooked my fingers on my belt loops and looked out Janet’s
window. She was located in the back of the building. Beyond a small
stretch of asphalt, she could actually see trees and houses. I looked
back at the screen again. “And it didn’t do this before?”

Janet shook her head. “Do you want the code to reproduce
it with?”

Not really. “OK….”
I took a disk with me back to my office. After putting Janet’s files

on my machine, I brought up my version of FoxPro and ran her
program. I saw the same behavior I saw in Janet’s office.

I next took the steps necessary to “back out” temporarily the
changes I made the day before, built a new product, and tried Janet’s
program again. Just like she said, it worked differently.

“Well for all the—” I shook my head. “How?”
I spent the better part of an hour figuring out “How.”
Every GET element in a READ may have a number of “clauses”

associated with it. In our manuals the description of the syntax for
the form of GET Janet was using (and there were many others) went
like this:

@ <row, column>
GET <memvar> | <field>
[FUNCTION <expC1>]
[PICTURE <expC2>]
[DEFAULT <expr1>]
[ENABLE | DISABLE]
[MESSAGE <expC5>]
[RANGE [<expr2>] [, <expr3>]]
[VALID <expL1> | <expn4> [ERROR <expC6>]]
[WHEN <expL2>]

Every line after the GET <memvar> line was what we considered
a “clause” and every one of them in some way could affect the
behavior of a particular GET, if they were included. With my changes I

140 FoxTales: Behind the Scenes at Fox Software

inadvertently altered the behavior of one of those clauses. Once the
problem was known, though, the fix was relatively straightforward.
One of my new subroutines needed to act slightly different when it was
called from one place in READ than it did in all the other places it was
called. It wasn’t a big enough difference to elicit an entirely new
routine, so I pulled another tool from the coder’s toolbox. I made it so I
could send a flag (a simple ‘YES’ or ‘NO’ value) into the routine. A
‘YES’ meant it was called from the place that needed to act differently,
a ‘NO’ from all the others. I made that change to the READ code,
tested it, and checked it in.

Later that same day, the writer named “Dave” (Venske) arrived at
my office door. In his late thirties, he had full, slicked-back head of
hair, and an easy smile.

“Janet says you’re in charge of READ now,” he said. “I have
something that’s acting weird for me today.”

“Do you have the code?”
He handed me a disk and gave me a short explanation of

the problem.
“Let’s give it a shot,” I said as I copied his dBASE code to my

machine. “Maybe I’ve fixed it already.” Hopefully the changes I made
this morning for Janet…. I ran his code and GETs filled my screen.

He chuckled. “Nope. Still there.” He pointed a finger, indicating
the problem.

I looked heavenward, frowning. “OK…I’ll take a look at it.”
An hour later, I figured out his problem. A different clause and a

different side effect of the same trivial changes. I made another—more
complicated—fix.

The next day, another person appeared at my office door. “I heard
you’re in charge of READ….”

“Yeah…?”
After about a week of similar occurrences, I finally had my initial

changes to READ working. I also came to realize the code for READ
was not just a “can of wombats,” it was what the senior members of the
team called “a tower of eggs.” You can construct the tower once, but
after it is up, it’s best looked at, and never touched again.

I also decided not to press ahead with any more READ
renovations. I’d just make the multi-window additions Dave wanted
and get out. The odds that I could make those changes without
breaking something were already incredibly slim—why push my luck?

 * * *

Chapter 14: Wombats and Eggs 141

I managed to finish the multi-window READ changes by the end of
September, but by then, Dave had another list of enhancements he
wanted added to READ. Those changes came with another level of
complication.

“Look at this!” Dave said after he hauled me into his office. He
brought up the Screen Painter and started pointing at his screen. “I
can’t seem to find the places in the Screen Painter where I can set a
control’s DISABLE attribute. Where are they?”

The answer to that question was easy. “They’re not there yet,”
I said.

The corners of Dave’s mouth turned down. “Why not?!”
My heart started to pound. For the last few weeks I not only had to

add features to READ, I had to add a corresponding means for
accessing those features to the Screen Painter as well. This round-robin
approach was in direct opposition to the way I liked to work. I liked to
code one part of a feature at a time and test it until I was confident it
worked. Consequently, I liked to be responsible for one under-
development portion of the product at a time and work on that until it
was finished. Working on two large and complicated portions of the
product, both undergoing frequent changes, with some
interdependencies between them, but no code really being shared, was
a lot to keep my arms around.

“Well…” I said. “I haven’t had time, Dave. I’ve been working on
adding it to READ first.” I glanced at a set of juggling balls Dave kept
within arms reach of his keyboard. Many in the development staff
took up juggling as a hobby—Dave especially. I didn’t know how
to juggle and frankly, I didn’t care to. One ball in the air alone was
enough for me.

Dave studied me quietly for a few moments. Then, out of the
corner of my eye, I saw Heindel pass by Dave’s door.

“Oh, David!” Dave said to Heindel.
Heindel, who had just made the turn toward developers’ row,

quickly turned around and walked back to Dave’s door. “Yeah, Dave?”
“How’s your stuff coming?” Dave asked.
“Pretty well,” Heindel said, shrugging. “Should be done soon.”
“Good…good…” Dave said, drumming his fingers on his desk.

“There are some READ changes that need made.”
Heindel glanced at me. “Oh?” He thought he’d left READ behind.
“It is your bailiwick. Kerry has Screen Painter changes to make.”
I remained silent and expressionless, but inside my emotions were

mixed. Part of me felt like I failed for not being able to handle both
areas concurrently, but the other part of me—the larger part—was
feeling really good.

142 FoxTales: Behind the Scenes at Fox Software

“OK,” Heindel said hesitantly. “I’ll work on READ….”
Dave waved us away and I followed Heindel back to his office.
“Dave wants me working on READ,” Heindel said, mostly

to himself.
“Sorry,” I said. And I was. I hated others having to pick up

my mess.
Heindel acquiesced, flipped up a hand. “Dave wants me working

on READ. Fine…fine….”
Heindel was a proficient juggler. For that, I was grateful.

 * * *

The following weekend I took our family friend, Marlene, in to see
where I worked for the very first time. Few people were around that
day, but in the middle of the tour, Dave strolled out of his office
holding a bag of popcorn.

“Hey Dave,” I said. “This is a friend of mine—Marlene.”
Marlene smiled. “Yes, I sort of motivated Kerry into the computer

field…into programming.”
“Oh really?” Dave said as he stuck out his empty hand to clasp

Marlene’s. He bounced a little and cackled loudly. “Maybe I should
hire you—to motivate him now!”

