Chapter 6: Creating Charts and Graphs 1

Chapter 6
Creating Charts and Graphs

It has been said that a picture is worth a thousand words. This is especially true when
analyzing trends in financial applications. Viewing the data in a graphical format is
usually more meaningful than merely reviewing a bunch of numbers in a spreadsheet. In
this chapter, we will explore several mechanisms by which we can generate graphs to be
displayed on forms or printed in reports. (Note: Creating graphs for display in web pages
can be accomplished using the Office Web Components. This is covered in Chapter 16:
VFP on the Web).

Graphing terminology

When we first began working with graphs, we were quite confused by all the terms used to
refer to the components of the chart object. The worst thing was that we were unable to find
any definition for these terms in any of the documentation. Take, for example, the following
excerpt from the MSGraph help file entry on the series object:

Using the Series Object

Use SeriesCollection(index), where index is the series' index number or name, to
return a single Series object. The following example sets the color of the interior for
series one in the chart.

myChart.SeriesCollection(1).Interior.Color = RGB(255, 0, 0)

Clearly, this is less than helpful if you don’t know what a series is. So let’s begin with defining
a few basic terms. A chart series is a single set of data on the graph. For example, if we create
a chart from this data:

x|
A B C D E =
1st Qitr 2nd Qtr (3rd Qtr [4th Qtr
1 =0 |East 20.4 27.4 80 20.4
2 @il [west 30.6 38.6 34.6 31.6
3 T 1|North 45.9 46.9 45 43.9
4
gl | o

##F06001.TIF
Figure 6.1:Data used to generate a graph

each column in the table, excluding the first, would create one series object in the chart’s
series collection. At least, this is the way it works most of the time. It depends on whether or

2 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

not the graphing engine plots the series in rows or columns. The default for both the MSChart
control and Excel is to plot the series in columns. However, the default for MSGraph is to plot
the series in rows! Fortunately, the way in which the series are plotted is configurable and can
be controlled programmatically.

The way in which a series is represented depends upon the chart type. Figure 6.2 shows
the four series that are created by the sample data above when the series are plotted in
columns. The data in each series object is represented in this chart type by columns of different
colors.

I 1st Qtr
O02nd Qtr

B 3rd Qtr
W 4th Qtr

##F06002.TIF
Figure 6.2: 3-D clustered column graph containing 4 series objects (series in columns)

On the other hand, this is what the same chart looks like in Figure 6.3 when the Series are
plotted from the data in the rows:

Chapter 6: Creating Charts and Graphs 3

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

##F06006.TIF
Figure 6.3: 3-D clustered column graph containing 3 series objects (series in rows)

Most chart objects contain an axis collection. Two-dimensional charts have an x-axis
(horizontal) and a y-axis (vertical). Three-dimensional charts add a z-axis (for depth). These
axes are also referred to as:

e Category axis ~ When the series data is plotted in columns, this identifies each row
in the data that is used to generate the chart. This is usually, but not
necessarily, synonymous with the x-axis. In Figure 6.2, the category
axis displays the names of the regions. In Figure 6.3, where the
series data is plotted in rows, the category axis displays the
quarters.

e Value Axis Identifies the range of values that will be displayed in the chart.
This is usually, but not necessarily, synonymous with the y-axis.
When defining the scale it is important to ensure that the maximum
and minimum values of any series are encompassed by the value
axis. In Figure 6.2 the values range between 0 and 90.

o Series Axis In three-dimensional charts each series is allocated its own set of
spatial co-ordinates. This is usually, but not necessarily,
synonymous with the z-axis. When the series data is plotted in
columns, the labels along the series axis correspond to the column
headings in the original data. When the series data is plotted in
rows, this corresponds to the contents of the first column in the data
used to generate the graph. The series axis labels and the legend
entries display the same text.

4 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

Axes have grid lines and tick lines. The grid lines for the value axis in Figure 6.2 are the
horizontal lines at each interval of 10. The lines that separate the labels on the category axis
are the tick lines. These labels are also known as tick labels.

How do | create a graph using MSChart? Example:
MsChartDemo.scx and ch06.vex::acxChart)

The MSChart control is a good starting point for working with graphs because it is a visual
control. You can drop it on a form and see how changing its properties affect the appearance
of the graph (Figure 6.4). Unfortunately, Microsoft stopped supporting this control on July 1,
1999 because, being single-threaded, it is incompatible with versions of Microsoft Internet
Explorer later than Version 4.0. However, it still ships with Visual FoxPro and, if all you want
to do is display a simple graph in a Visual FoxPro form, it is still a good solution.

= Class Designer - chDB.vcx (acxcha =1E3 MSChart Properties x|
E =]
. H char |A><i9 | s Grid | Series | Series Calor| Backdrop | Text | Fants |
100 100 ~ChanType—————— —Chart Options
80 80 ™ Showlegend
B0 +— — | L 50 ™ Show markers
40 -t — | — L 4n I™ Stack series
20 - 10 ' (Scatier) I” Series in rows
0 -0
R1 R2 3 R4 Ra
| 0K I Cancel Apply Help
Al 0

##F06003.TIF
Figure 6.4:MSChart Control properties

The MSChart control is associated with a DataGrid that is used to create the necessary
series objects. So in order to get MSChart to display a graph, we first have to populate the
DataGrid, ensuring that we get things in the correct locations. Since the Chart control is a data
bound control, we could create an ADO Recordset that contains the data to display, and use it
as the Chart control's DataSource. When we use a recordset (and only when we use a
recordset) the first field is assumed to be the label for the category axis when it holds character
data. Otherwise the first column is treated no differently than any other and is used to define a
series object. So, if the labels for your category axis represent numeric values, you must format
them as character strings when using an ADO Recordset with the chart control.

Unfortunately, we cannot bind the Chart control directly to a Visual FoxPro cursor. So,
unless we want to create an ADO Recordset from the cursor, we must iterate through the
records in our cursor and populate the control’s DataGrid directly like this:

LOCALO nCol , O nRow

W THOTHI SFORM oChar t O

O ** OSet Ot heOnunber Cof Of i el dsCi nt heCcur sor O
00, Col umCount CEOFCOUNT(O csrResul ts') - 10O
]

Chapter 6: Creating Charts and Graphs 5

O ** OSet [t heCnunber Cof Or ows [t ot heChunber Cof Cr ecor ds nlt helcur sor O
0. RowCount CFORECCOUNT([T csrResul ts' [) O

O

O ** OPopul at e[t he[Dat aGri d0Obj ect . O

OOSELECTCesr Resul tsO

OOSCAND

0000 Row=ORECNQ(O csrResul ts') O

OO00FORO nCol C=MOTOD. Col urmCount O

000000, Col um =0 nCol O

00000 ** OSi ncelt hef i r st Ocol uimO sCusedOf or [t hellcat egor yd abel sO
00000 * * DWeOnust O ner ement Cour Ceount er OO

000000, Dat aO=OEVALUATE(OFI ELD(O nCol tHO10) O) O

OOOOENDFORO

OOENDSCANDO

ENDW THO

Note that when we manually populate the Chart’s DataGrid like this, the labels for the
category axis do not automatically come from the first column of the data. In fact, used this
way, the DataGrid can only contain the actual values that will be used to generate series
objects. Labels are added by explicitly setting the properties for them on both the category and
value axes.

Having populated the grid, we can set the properties that control the output. There are an
awful lot of these, but the most important ones for explaining what a graph shows are:

e RowlLabel: The labels collection for the category axis
e ColumnLabel: The labels collection for the value axis
e AxisTitle.Text: The title for the axis title object

o AxisTitle. VtFont.Size: The font size for the axis title object

The sample form creates three different graphs on the fly and displays them using the
MSChart control. To make the graph generation process extensible and maintainable, we store
the graph definitions in a free table called QUERIES.DBF with this structure:

Table 6.1:Structure of metadata used to store graph definitions

Field Name | Type | Length | Description
C

cQueryName 20 Keyword used to look up the record in Queries.dbf

cQueryDesc C 50 Query description for use in end user displays

cPopupForm | C 80 Name of popup form used to obtain values for the query’s ad hoc
where clause if one is specified

nChartType | Type of chart to generate (e.g. 3-D Bar, 2-D Line) defined by one of
the chart type constants in mschrt20.h

nGraphType | Serves the same purpose as nChartType when used to generate

graphs using MsGraph (We need both because the constants have
different meanings in MSGraph and MSChart)

mQuery M The query used to obtain the data that will be used to generate the
chart. This may include expressions like “WHERE Customer.cust_id
= 'e<pcParm1>>" to specify an ad hoc WHERE clause because the
TEXTMERGE() function will be used before the query is run.

cMethod C 80 The name of a form method to run after the query is run to massage

6 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

the result cursor
cTitleX C 50 Title for the X-axis
cTitleY C 50 Title for the Y-axis
cTitleZ C 50 Title for the Z-axis

The form has seven custom methods that use the data in QUERIES.DBF to gather any
required parameters from the user and generate the graph.

Table 6.2:MSChartDemo.scx custom methods

Method name

Description

MakeGraph

Called by the onClick() method of the ‘Create Graph’ command button, this is the
control method that generates the graph.

DoQuery

Called by the form’s MakeGraph() method, uses the passed parameter object to
run the query contained in the mQuery field of the current record in Queries.dbf. It
always places the query results in a cursor named csrResults so that we can write
generic code in the form to handle the results of different queries.

GetQueryParms

Called by the form’s MakeGraph() method. This method instantiates the form
specified in the cPopUpForm field of the current record in Queries.dbf. The popup
form returns a parameter object which is passed back to the MakeGraph()
method.

MakeMonthColumns

Called by MakeGraph() when it is specified in the cMethod field of Queries.dbf. It
takes the contents of csrResults , which is a “vertical” structure with a single
record for each month, and converts it into a “horizontal” structure with one field
for each month in a single record.

MakeYearColumns

Called by MakeGraph() if it is specified in the cMethod field of Queries.dbf. It takes
the contents of csrResults, which is a “vertical” structure with a single record for
each year, and converts it into a “horizontal” structure with one field for each year
in a single record. The number of fields in the new structure depends upon the
range of distinct years contained in the original cursor.

PopulateDataGrid Called by MakeGraph() to populate the graph’s DataGrid object from the
information in csrResults.
SetAxisTitles Uses the information in the title fields in Queries.dbf to set the axis titles. Also sets

the fonts for the titles and labels.

As you can see from Table 6.2, the form’s custom MakeGraph() method controls the
whole process. It passes any required parameters to the form’s custom DoQuery() method.
DoQuery(), as its name implies, runs the query from QUERIES.DBF to generate the cursor
csrResults thatholds the data used to generate the graph. Next, when a method name is
specified in Queries.cMethod, MakeGraph() first checks to make sure that the method exists
and then calls it. The csrResults cursor, generated by the DoQuery() method is used by
PopulateDataGrid() to pass data to the chart like this:

LOCALO nCol , O nRowd]
W THOTHI SFORM oChart O

O

O ** OSet [t heCchar t Ot ypeO
OO Char t Type=0Thi sf orm cboChart Type. Val uel

O

Ox ** OSet [t heChunber Cof OF i el dsO nt helcur sor O
0. Col umCount O=0OFCOUNT(O csrResul ts') O 10

[EEE]

O ** OSet Ot heOnunber Cof Or ows [t ot heOnunber Uof Or ecor dsCi nCt heCOcur sor O

Chapter 6: Creating Charts and Graphs 7

0. RowCount CFORECCOUNT([T csrResul ts') O

ooo

O ** OPopul at e[t he(Dat aG i dObj ect . O
OOSELECTCcsr Resul t sO

OOSCAND

0000 Row=ORECNQ(T csrResul ts') O

O

000 * * OSet CupCt hed abel Of or Ot heCcat egor yOaxi sO
0000 RowLabel CEOEVALUATE(OFI ELD] 010] O) O

O

OO0 ** OPopul at et he(dat algr i dOwi t h(t heChurrer i cOdat all
OO00FORO nCol C=MOTOD. Col urmCount O

000000, Col um =0 nCol O

000000, Dat aO=OEVALUATE(OFI ELD(O nCol tHO10) O) O
OOOOENDFORO

OOENDSCANDO

OOFORO nCol C=LOTOD. Col utmCount O

0000 Row =010

0000, Col unm =0 nCol O

0000, Col ummLabel O=OALLTRI M OFI ELD(O nCol CHMO) O) O
OOENDFORO

ENDW THO

The act of populating the DataGrid forces the chart to display on the form, however, at
this point all it has it the raw data and axis labels. The final steps in the MakeGraph() process
are to call SetAxisTitles() and then tidy up the display by setting the chart’s Projection,
Stacking and BarGap properties to values which are more suitable than the defaults which
MSChart supplies when the chart is re-drawn.

Note that the PopulateDataGrid() method manipulates the Data property of the chart
object directly. However, if you open MsCHART20.LIB in the object browser you will not be able
to find this property. Apparently it is not exposed by the type library. However, it is
documented in the help file (MsCHRT98.cHM) and certainly appears to be present and available.
It is used to get, or set, a value at the current data point in the data grid of a chart. A data point
is made current by setting the chart’s Row and Column properties to its co-ordinates. By the
way, these properties do not appear in the object browser either, even though they too are
listed in the help file.

As you can see, getting a graph into a form is actually pretty easy with MSChart.
However, including an MSChart graph in a printed report is not. MSChart does have an
EditCopy() method that copies the chart object to the clipboard in metafile format, but there is
no easy way to transfer the metafile from clipboard to disk without using additional software.
Nor can you insert the Chart object into a General field, so it cannot be included in a printed
report that way either. So if printing is a requirement, you need to use something other than
MSChart.

How do | create a graph using MSGraph? Exampie:
MsGraphDemo.scx)

MsGraph is actually a cut-down version of the Microsoft Excel graphing engine. You can see
this if you open GraPH9.0LB in the object browser and expand the enums node (Figure 6.5).

8 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

. Object Browser _ o) x|
%'“-Back -P|| <<>>.'?@Finl:||&Options|@|
ICIasses & Members IEmpty

=-2F Enurns (58] |
&P Constants

2 KarowHeadLength
&P XlarowHeadStyle

2R KlarowHeadWidth
2R KlxisCrosses

2R Kbz Group

2R KlxisType

-2F ¥|Background

28 XIBarsShape

&R ¥IBorderweight

2R XICategonyType

28 KIChanGallery

&R XICharitem

—2F XICharPicturePlacement
28 KICharPicture Type
& XIChanSplitType

2P XICharType

2R KICmdType

&R XIColarindeax

2 WColumnDataType
2R ¥IConsolidationFunction
& ¥ICopyPictureFarmat
&R XICraator

2 KICubeField Type

&P ¥IDatalahelPasition
&P XIDatalabelsType
~2F XIDataSeriesDate

-2 XIDataSeriesType

&P XIDeleteShiftDirection

-2F XIDirection
&P XIDisplayBlanksis
P IO | TP PR g TOOSNI Y o] SR PR 9o ;I
Library Graph

hicrosoft Graph 9.0 Object Library

File: ey office2004 office’graphd.olb

Help File: d:iofice2004ofice \WBAGRPY.CHM ot msisiea)
GUID: {00020302-0000-0000-C000-000000000046}

I Ready,

##F06004.TIF
Figure 6.5:MSGraph constants in the class browser

Notice that all the constant names begin with ‘X1°? There is a very good reason for this,
they are the same names and values that are used by Excel’s graphing engine. So, if you start
out using MSGraph to create your graphs and later decide to move to Excel automation, you
should find that most of the code to manipulate the graph will run with no modification.

Having a much simpler object model than Excel (Figure 6.6), MSGraph is lighter and
quicker to instantiate and therefore the results appear more quickly too.

Chapter 6: Creating Charts and Graphs 9

Microsoft Graph Objects

|App|icaliun

DataSheet |

Hange ‘

Font ‘

AutoCorrect |

CommandBars [CommandBar) |

Chart

HEhartArea | Datal able |
HPlotArea | Border]
HFloor | Font |
—| Walls ‘ Legend ‘
—| Cormers ‘ I—I LegendEntries [LegendEntiy) |
ﬁ ChartTitle ‘ LegendKey ‘
ﬁ SernesCollection [Series) ‘ ChartGroups [ChartGroup)
Trendlines [Trendline] | DownBars | I—lSeliesEnllanlinn (Series) |
ﬂAxes [Axis) ‘ UpBars ‘ *‘E"OlBalS ‘
AnisTille | HiLoLines | HBorder |
DisplayUnitLabel | SenesLines ‘ {DalaLaheI: [Datal abel] ‘
Gridlines | Droplines | HEhartFilFormat |
TickLabels | TickLabels | Hinterior |
HLeaderLines |
Legend HPoints (Point) |
[object and collection HDa‘aLahe' |
& Object only - {Tlendline:[Tlendline] ‘

##F06005.TIF
Figure 6.6:MSGraph object model

MSGraph gives you much more control over the graph’s appearance than MSChart does.
It is also possible to include graphs in printed reports if you use MSGraph to generate them
because they can be added to, and printed directly from, a General field in a table or cursor.

##Note Icon #1

One unpleasant surprise that we encountered when working with MSChart and
MSGraph was the lack of consistency between the two. Not only did the
properties, methods and events have different names, even the constants had
different meanings! For example, a chart type of ‘1’ in MSChart produces a 2-
dimensional bar graph. In MSGraph, this is an area graph.

The easiest way that we have found to manipulate MSGraph is to store a “template” graph
in a General field of a table. Then, whenever we need to create a particular graph, we drop an
OleBound Control on a form and set its ControlSource to the General field in a cursor created
from that table. This has several benefits:

e Avoids contention when several users try to create a graph at the same time since
each user has his own cursor

10 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

e Does not require multiple graphs to be stored. After all, graphs are generally used to
depict current trends and, as such, are usually generated ‘on the fly’ so it makes no
sense to store them permanently in a table or on disk

¢ Using an OleBound Control gives us direct access to the graph through its properties.
This means we can manipulate the graph programmatically while the form is invisible
and then display or print the final result.

The sample form uses this technique. Notice that we are using the same data-driven
methodology that we used with the MSChart control. Thus, the custom MakeGraph() method
in the sample form controls the graph generation process and calls the following supporting
methods:

e GetQueryParms Pulls up the popup form to gather any values required for
the query's ad hoc where clause if a pop up form is
specified in the cPopupForm field of QUERIES.DBF

e DoQuery Creates a cursor named csrResults by running the query
specified in QUERIES.DBF

e UpdateGraphData Constructs the proper format string to use with APPENDO
GENERALDATA and issues the command

o FormatGraph Sets various graph properties such as axis titles, tick label
fonts, and so on.

Two new custom methods, UpdateGraphData() and FormatGraph() use the cursor to
render the appropriate graph. The only differences from the MSChart sample are in the details
of the code that is used to generate and format the graph object.

The form’s custom UpdateGraphData() method uses the native Visual FoxPro APPENDO
GENERAL Ocommand with the DATA clause to update the graph in the General field of a cursor
named csrGraph. This cursor is created from the table vfpgraph.dbf in the form’s Load()
method. (Remember, the vfpgraph.dbf table has only one record which stores the template
graph and which is never updated). In order to use this form of APPENDCOGENERAL, the data must
be in “standard clipboard” format which means that the fields are separated by TAB characters,
and the records are separated by carriage returns. The first part of the method deals with
converting the data from csrResults into the correct format.

LOCALO cGraphDat a, O nFl d, O nFi el dCount O

***[Make[t helol eBoundCont rol [0 nvi si bl e

*** JandCunbi ndd t OsoOweOcanCupdat et heCgener al Of i el dO
Thi sform LockScreen=0 T. O

Thi sf orm oG aph. Cont rol Sourced= ' O

oo

*** INow(bui | d(t heOst ri ngDweheed[t oCupdat et helgr aphO
***[j n[t heClgeneral (f i el dO

| cGraphDat al=0'" 0O

SELECTcsr Resul t sO

I nFi el dCount O=0O0FCOUNT() O

oo

Chapter 6: Creating Charts and Graphs 1

***[Bui | d(It ab- del i mi t edst ri nglof (f i el dChames: O

FORO nFl dC=010700 nFi el dCount OO0

00 c¢Gr aphDat al=0 ¢G aphDat al*+OFI ELD(O nFl d0) [t O

OO0#+00 | F(O nFl dCk0 nFi el dCount , OCHR(090) , OCHR(C130) CHOCHR(C100) 0) O
ENDFORO

O

***[Concat enat e(lt he(ldat a, Cconver ti ngbnuneri cfi el dsCt olcharacter: O
SCAN

0OFORO nFl dC=0107T00 nFi el dCount OO0

0000 ¢Gr aphDat al=0 ¢ G aphDat alH+OTRANSFORM OEVALUATE(OFI ELD(O nFl d0) 0) O) CH+3; O
O0000+00 | F(O nFl di<O nFi el dCount , OCHR([90) , OCHR(0130) OCH+OCHR((100) 0) O
[JJENDFORO

ENDSCANO

O

GOOTOPI NCesr Resul t sO

O

**x [JOK, [r eady [t oCupdat et helOgr aphO

SELECTOcsr GraphO

APPENDUGENERAL (ol eGr aph[OCLASS[I' MsGr aph. Chart " ODATA ¢G aphDat all

Having updated the General field we can bind the control on the form directly to the
cursor and set the following properties:

e ChartType: Determines the type of graph. Values are defined in graph9.h

e Application.PlotBy: Determines whether series objects are generated from rows, or
columns in the data.

W THOThi sf orm oGraphO

O ** OReset [t heCcont r ol Sour celof (¢t he(A eBoundCcontrol O
0. Cont r ol Sour ce[FI' csr GRaph. ol eG aph" O

O

O ** OSet [t heCchar t Ot ypelO

. obj ect . Chart Type=0Thi sf orm cboGr aphType. Val uel

O

O ** OSet [t heCdat alt o0gr apht helOcol umsCas[t heCseri esd
O ** Unl ess, Dof Ccour se, [t hi sO sCalpi eCchart O

00 FONOTOI NLI ST(. Chart Type, x|l 3DPi e, [xI Pi e, (x| Pi ek Pi e, (x| Pi eExpl oded, [, O
O0000x | 3DPi eExpl oded, [xI Bar OF Pi el)) O

0000, Cbj ect . Appl i cati on. Pl ot ByC=[xI Col utmsO

OCELSED

0000 Cbj ect . Appli cati on. Pl ot By (=[xl Rows [

OCENDI FO

ENDW THO

Thi sf orm LockScreen=0 F. O

It is evident from this code listing that we ran into a couple of problems when creating the
sample form. First, we discovered that the APPENDOGENERAL command refused to update the
graph in the general field while it was bound to the OleBound Control. We finally had to
unbind the control before issuing the command and re-bind it afterward. Second, we had to
explicitly tell MSGraph to use the columns as the data series for all charts except pie charts,
overriding the default behavior which is data series in rows and which can produce some very
odd-looking graphs.

12 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

That is all that must be done to generate and display the graph. However, we found that
the default values produced ugly graphs and so we needed to set some additional properties to
improve the appearance. The properties and methods available for MSGraph are, to say the
least, comprehensive. The full list is included in VBAGRP9.cuMm, the help file for MSGraph.
However, the actual documentation is rather sparse, so, once you are certain that the item you
are interested in actually exists in the MSGraph object model, we suggest that you look it up in
the Excel documentation - which is slightly better. Remember, MSGraph is just a cut-down
version of Excel’s graphing engine.

While it is beyond the scope of this chapter to show you how to manipulate all of these
properties, the custom FormatGraph() method shows how manipulating a few of the graph’s
properties changes its appearance.

The first thing that we want to do is to set the axis titles and fonts. However, not all chart
types have an axes collection (most notably Pie charts). The chart object exposes a HasAxis()
method which, despite being referred to in the documentation as a Property, accepts a constant
that identifies the axis type and returns a logical value. You would be forgiven for thinking
that we could use this to tell us whether a given axis exists. However, it turns out that if the
graph does not have an axes collection, trying to access this “property” simply causes an OLE
error. So we have no alternative but to check the graph type explicitly:

I FONOTOI NLI ST(O. Chart Type, Oxl 3DPi e, (x| Pi e, Ikl PieO'Pie, 0, O
0000000000000 Pi eExpl oded, [xI 3DPi eExpl oded, (x| Bar O Pi e()) O

and only if the chart has axes do we then proceed to configure them, by setting the
following properties for each axis object in the Axes collection:

e TickLabels.Font.Size
e HasTitle
o AxistTitle. Text

e AxisTitle.Font.Size

W THC. Axes(x| Cat egory) O

0. Ti ckLabel s. Font . Si ze[(=(80

00 cTitleText CFOALLTRI M OQueries. cTitl exXD) O
00 FONOTCEMPTY(O cTitl eText O O
0000 HasTitl e=0T. O

0000 Axi sTitle. Text =0 cTitl eText O
0000 Axi sTitl e. Font. Si ze[(=100
OOELSEO

0000 HasTitl e=0 F. O

OOENDI FO

ENDW THO

For the chart types that don’t have an axes collection, we only need to set the following
properties on the Chart object:
e HasTitle

e ChartTitle.Text

Chapter 6: Creating Charts and Graphs 13

e ChartTitle.Font.Size

but we also need to call an additional method, ApplyDataLabels(), to assign labels to the
pie chart segments.

One word of caution. Even though a given property or method is defined as being part of
the object model, not all properties and methods are always available. As we found with the
HasAxis() method, it is imperative to ensure that a specific instance of the graph actually has
the required property or method before trying to access it. If, for any reason, it is not available,
MSGraph hands you back a nasty OLE error.

How do | create a graph using Excel automation? Example:

ExcelAutomation.scx)

Producing graphs represents only a tiny fraction of what you can do when you harness the
power of Excel in your Visual FoxPro applications. While VFP is an excellent tool for
manipulating data, it is definitely not the best tool when it comes to dealing with complex
mathematical formulae. An entire book could be devoted to the topic of Excel automation (in
fact, several have) and a complete discussion of its capabilities is beyond the scope of this
chapter. For specific examples using Visual FoxPro, see “Microsoft Office Automation with
Visual FoxPro” by Tamar E. Granor and Della Martin (Hentzenwerke publishing, 2000 ISBN:
0-9655093-0-3).

14 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

_." Excel Automation Demonstration Form

Select Graph to Generate

Change Chart Type

tonthly Sales By Year

j |3-D Clustered Column

_|E|
Create Print
j Graph Graph

x|

120000 o

100000 —

E0000

OYEAR1993
B YELR1594
OYEAR1995
OYEAR1996

Total Dollars 0000

40000

MN000 —

##F06007.TIF
Figure 6.7:Excel automation sample form

The example form (Figure 6.7) uses the same data-driven methodology that we have used
with MSGraph and MSChart. The difference is that instead of formatting our data and feeding
it directly to the graphing tool, we now have to feed the data to Excel and then instruct it to
create a graph using that data. To do this we added a custom AutomateExcel() method that first
creates an instance of Excel, then opens a workbook and populates a range in the active
worksheet with the data from our results cursor:

*** [cr eat eJanl nst ancelof Cexcel . O

| oXlI C=OCREATEOBJECT(O Excel . Application' OO

O

*** [INowCaddOawor kbook OsoCweCcanCpopul at et heCact i ve[Owor ksheet O
*** i t h(t helOdat al)f r omit helOquer yOr esul t sO

| oVWB=0 oXl . Wor kbooks. Add() O

O

*** ONow(ff i | | O nt heCdat ald

W THO oWb. Act i veSheet O

O

O ** 0G vel t Calnanmedsowecanlr ef erencelli t O
O ** Caf t er (weOaddCalnewisheet Of or [t heCchar t O
0. Name[=[1" Char t Dat a" O

Chapter 6: Creating Charts and Graphs 15

O

0 ** OvakeOsur eOweChavelt helf i el dChamesO n(t hef i r st Or owlof [t he[wor k(Osheet O
O ** OweOdonot Owant [t hef i el dCnamelf or [t helf i r st Ocol utmOwhi ch sCusedCt o0
O** 0 denti fy(t helcat egori esd

0OFORO nCol CFROTOFCOUNT(I csrResul ts' O O

O

000 * * OConver t Ot hef i el dOnunber O nt oCanExcel Ccel | Odesi gnati onO

000 ** DWeOcanOdo[t hi sCeasi | y[becauseI A" ThasCanOasci i Oval ueOof 0650

0000 cCel | O=0OCHR(O nCol +0640) +' 1" O

O

OO0 ** OGoCaheadCandCset O t sCval uel

0000 Range(d cCel |) . Val ue=OALLTRI M OFI ELD{ O nCol , O csrResul ts') O) O
OOENDFORO

Populating the cells in the worksheet is a little trickier than populating the DataGrid of the
MSChart control, or sending data to MSGraph, because the cells in an Excel spreadsheet are
identified by an alphanumeric key. The columns are identified by the letters A through Z while
the rows are identified by their row numbers. So, to access a particular cell, you must use a
combination of the two. For example, to identify the cell in the first row of the first column of
the spreadsheet, you identify it as Range(‘A1’). As you can see in the following code, it is
easy enough to convert a column number to a letter because the letter ‘A’ has an ASCII value
of 65. So all we need to do is add 64 to the field number in our cursor and apply the CHR() O
function to the result.

O ** ONow(J ust Oscan(t helcur sor DandOpopul at el helr est Cof [t heCcel | sO
OOSELECTCesr Resul tsO

OOSCAND

OOO00FORO nCol C=OLOTOOFCOUNT([T csrResul ts') O

O

OO000 * * OGet [t helcel | G nCt heOwor ksheet [t hat OwelneedO

00000 ** OSi ncelt hef i r st Or owChas Tt helcol utmCheadi ngs, OwelChust O
00000 ** Ost ar t O nCt heOsecondCr owof [t heOwor ksheet O

00000 cCel | CT=OCHR(O nCol +640) (+OTRANSFORM CRECNQ([T csr Resul t s' [) (H10) O
O

00000 * * OGoCaheadCandset O t sCval ued

000000, Range(O cCel | O) . Val ued=OEVALUATE(OFI ELD(Ol nCol , [T csrResul ts' [) O) O
DOOOENDFORO

CENDSCANC

00GOOTOPOI NCesr Resul t sO

ENDW THO

This code works, but there is one major problem with it. It is slow! Poking values into
individual cells in a spreadsheet inside of a tight loop is not the most efficient way to get the
job done. Fortunately, we can use the DataToClip() method of the Visual FoxPro application
object to copy the data in our cursor to the clipboard. Then we can use the active worksheet’s
Paste() method to insert the data from the clipboard into the spreadsheet. Using the modified
code listed below yields an improvement in performance of up to 60% depending on the
volume of data being sent to Excel. Another benefit of using our modified version of the code
to send data to Excel is that there is less of it. Less code means fewer bugs.

W THO oWb. Act i veSheet O
0 ** 0G vel t Calnamedsowecanlr ef erencelli t O
O ** Caf t er (weOaddCalnewisheet [Of or [t heCchart O

16 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

00 Nane[=0" Char t Dat a" O

O

O ** OCGet [t heCnunber Cof Ceol urmsO

00 nFl dCount CFOFCOUNT(0 csrResul ts') O

O

07 ** ODAddCOonebecauselcopyi nglt heCOdat alt ot helkcl i pboar dO
O ** Cadds Calr owlf or [t hel¥ i el dChamesO

00 nRecCnt OFORECCOUNT(T csrResul ts' [O) (10
OOSELECTCcsr Resul tsO

ooGoOTrorPO

O

O ** OCopy [t okl i pboardOwi t h(If i el dsOdel i mi t edCby [t absO

00 VFP. Dat aTod i p(O csrResul ts', ORECCOUNT([T csrResul ts'), (B30) O
O

O ** OCGet [t helr angeof [t he(Odat ald nCt heOwor ksheet O

00 cCel | OFO ALl: ' +OCHR(064+ nFl dCount O) CHOTRANSFORM O nRecCnt) O
O

O ***OAndOpast e[t 0 nO

0O . Paste(. Range(d cCel | 0) 0) OO

O

O ** (But ChowweChavet oChrekeOsur el hat Ceel | OALD sl ankO
O ** OC her wi selt heCchar t O sOnot Cer eat edCcorrect | yO

00 Range(™ A1" D) . Val uel=""0O

0 GOOTOPOI NCesr Resul t sO

ENDW THO

After we transfer the data from the cursor to the spreadsheet, we are ready to create the
graph. This is done by adding an empty chart object to the workbook’s charts collection and
telling it to generate itself. The chart object’s SetSourceData() method accepts a reference to
the range that contains the data together with a numeric constant that specifies how to generate
the series objects (i.e. from rows or columns). To ensure that the display is in the correct
format, the AutomateExcel() method forces the chart object’s ChartType property to the correct
value:

I oChart =00 oWB. Charts. Add() O 0O 0

*** [ISet [t helOdat alt olgr apht heCcol umsas [t helseri esld

*** Unl ess, Uof Ocour se, Ot hi sO sOalpi eCchart O

| FONOTOI NLI ST(OThi sf or m cboGr aphType. Val ue, [x| 3DPi e, (XI Pi e, [J; O
000000000 Pi eOF Pi e, OxI Pi eExpl oded, [xl 3DPi eExpl oded, Ox| Bar Of Pi e[O
00 nPl ot By C=xI Col utmsO

ELSEO

00 nPl ot By C=[x| Rows O

ENDI FO

O

W THO oChartO O

O ** OCener at e[t heCchar t Of r omit heOdat ald nCt heOwor ksheet O

0. Set Sour ceDat a(O oWB. Sheet s([Chart Data"[)) . Range(d cCel |), O nPl ot By() O
oo

O ** OSet [t helchar t (t ypelO

0. Chart Type=0Thi sf or m cboG aphType. Val uell

At this point we have a chart in an Excel spreadsheet, but what we really want is to
display it in a Visual FoxPro form. The easiest way to do this is to use the chart’s SaveA4s()
method to save it to a temporary file. We can then use the APPENDOGENERAL command to suck

Chapter 6: Creating Charts and Graphs 17

the chart into the General field of the cursor that was created in the Load() method of the
demonstration form. Once the graph is safely in the General field, we can quit Excel, erase the
temporary file, and bind the OleBound control on the form to the cursor’s General field. The
last part of the AutomateExcel() method does exactly that:

0 ** OSavelt oCalk erporary(fi | ed

00 cFi | eName[(FOSYS([20150) (T . xI s' O

00 oChart . SaveAs(OFULLPATH(OCURDI R() O) tHO cFi | eNarme) O
ENDW THO

O

*** JandOqui t Ot heOappl i cati ond

loXl .Qit()O

O

*** [nsert [t heClgr aph(i nt ot he(lgener al [f i el d0 nCt heCcur sor O
SELECTOcsr GraphO

APPENDUOGENERAL (ol eGr aphOFROM(O cFi | eNanme[) OCLASSI! Excel . Chart " 00
O

*** fandlcl eanCupd

ERASEL(O cFi | eNamel) O

O

W THOThi sf or niJ

O ** (Reset [t heCcont r ol Sour celof (¢ heA eBoundCcontrol O

0. oGr aph. Cont r ol Sour ce(=" csr Graph. ol eG aph" O

OO LockScreenC=C F. O

ENDW THO

Now that the graph is bound to the OleBound control on the form, we can manipulate its
appearance in much the same way that we did for MSGraph. As a matter of fact, the code the
in form’s custom FormatGraph() method is almost identical to the code in the previous
example. Other than changing references to Thisform.oGraph.Object to
Thisform.oGraph.Object. ActiveChart, all we had to change for our Excel automation sample
was to add this line:

*** INow(set [t heCaxesCat Or i ght Jangl esf or O03- dCbar, Ocol unm, Candd i neCchart sO
| FOI NLI ST(O. Chart Type, [xI 3DCol umd ust er ed, [Ix| 3DCol umSt acked, (I, O
O00O00000000X | 3DCol um St acked100, Oxl 3DBar Cl ust er ed, x| 3DBar St acked, [0, O
00000000000 X | 3DBar St acked100, x| 3DLi nel) O

OdThi sf orm oG aph. Qbj ect. Acti veChart. R ght Angl eAxes=O. T. O

ENDI FO

18 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

. Excel Automation Demonstration Form =Ioix]

Select Graph to Generabe Change Chan Type

G | P |
[maranty sates ey viar =] |30 Glusterid Gotnan E| 0:;:"

CEE

r _—_—______’H W vE AR89
] N

ERELTEH

¥ [0 A1 996

##F06008.TIF
Figure 6.8:Default perspective of 3-D graph generated by Excel

This is because MSGraph, by default, creates a pretty 3-dimensional graph with the axes
at right angles to each other. Excel does not. Before we added this line of code, the graph
looked like Figure 6.8. As you can see, it had an unappealing ragged appearance.

The graph object has a huge numbers of properties and methods that you can use to
manipulate its appearance which are described in the Excel 2000 help file, VbaX19.chm. In
addition to the documentation, our sample form makes it easy for you to experiment with the
effect of changing properties. All you have to do is run the form, click the ‘Create Graph’
button, and type this in the command window:

o0 Screen. ActiveForm oG aph. Obj ect. ActiveChart(

You can then call the methods of the charts object or change its properties and
immediately see either an OLE error or a change in the appearance of the graph in the form.

Using Visual FoxPro 7 makes the discovery process even easier because of IntelliSense.
Once you have a reference to the chart object, you can see a list of all the methods and
properties that apply (Figure 6.9).

Chapter 6: Creating Charts and Graphs

19

il Command
DO FORM d:imegafoxichléiexcelautomation.scx

0= screen.ActiveForm.oGraph.OBJECT.ActiveChart
o.

=BActivate

& Application
=AnnlyCustom Type
=AnplyDatalabels
B Arcs

&l AreaiDGroup
=dAreaGroups

B AutoFarmat
eEAutoScaling
=BAXES

& BariDGroup
=SBarGroups

& BarShape

&, Buttans

g Charndrea

-

##F06009.TIF

Figure 6.9: Exploring the Excel object model from the VFP 7.0 command window

Conclusion

A picture is indeed worth a thousand words. Including graphs and charts in your applications,
whether displayed in a form or printed in a report, adds a lot of pizzazz and a professional look
and feel. In the past, adding this functionality was more than a little painful because of the lack

of documentation and good working examples. We hope that this chapter has given you a

better starting point than we had when we wrote it and that you can use the examples to create
some really spectacular graphs of your own.

