
Chapter 6: Creating Charts and Graphs  1 

Chapter 6 
Creating Charts and Graphs 

It has been said that a picture is worth a thousand words. This is especially true when 
analyzing trends in financial applications. Viewing the data in a graphical format is 
usually more meaningful than merely reviewing a bunch of numbers in a spreadsheet. In 
this chapter, we will explore several mechanisms by which we can generate graphs to be 
displayed on forms or printed in reports. (Note: Creating graphs for display in web pages 
can be accomplished using the Office Web Components. This is covered in Chapter 16: 
VFP on the Web). 

Graphing terminology 
When we first began working with graphs, we were quite confused by all the terms used to 
refer to the components of the chart object. The worst thing was that we were unable to find 
any definition for these terms in any of the documentation. Take, for example, the following 
excerpt from the MSGraph help file entry on the series object: 

 
Using the Series Object 

Use SeriesCollection(index), where index is the series' index number or name, to 
return a single Series object. The following example sets the color of the interior for 
series one in the chart. 

myChart.SeriesCollection(1).Interior.Color = RGB(255, 0, 0) 

Clearly, this is less than helpful if you don’t know what a series is. So let’s begin with defining 
a few basic terms. A chart series is a single set of data on the graph. For example, if we create 
a chart from this data: 

 

##F06001.TIF 
Figure 6.1:Data used to generate a graph 

each column in the table, excluding the first, would create one series object in the chart’s 
series collection. At least, this is the way it works most of the time. It depends on whether or 



2  MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro 

not the graphing engine plots the series in rows or columns. The default for both the MSChart 
control and Excel is to plot the series in columns. However, the default for MSGraph is to plot 
the series in rows! Fortunately, the way in which the series are plotted is configurable and can 
be controlled programmatically. 

The way in which a series is represented depends upon the chart type. Figure 6.2 shows 
the four series that are created by the sample data above when the series are plotted in 
columns. The data in each series object is represented in this chart type by columns of different 
colors. 

 

##F06002.TIF 
Figure 6.2: 3-D clustered column graph containing 4 series objects (series in columns) 

On the other hand, this is what the same chart looks like in Figure 6.3 when the Series are 
plotted from the data in the rows: 



Chapter 6: Creating Charts and Graphs  3 

 

##F06006.TIF 
Figure 6.3: 3-D clustered column graph containing 3 series objects (series in rows) 

Most chart objects contain an axis collection. Two-dimensional charts have an x-axis 
(horizontal) and a y-axis (vertical). Three-dimensional charts add a z-axis (for depth). These 
axes are also referred to as: 

• Category axis When the series data is plotted in columns, this identifies each row 
in the data that is used to generate the chart. This is usually, but not 
necessarily, synonymous with the x-axis. In Figure 6.2, the category 
axis displays the names of the regions. In Figure 6.3, where the 
series data is plotted in rows, the category axis displays the 
quarters.  

• Value Axis    Identifies the range of values that will be displayed in the chart. 
This is usually, but not necessarily, synonymous with the y-axis. 
When defining the scale it is important to ensure that the maximum 
and minimum values of any series are encompassed by the value 
axis. In Figure 6.2 the values range between 0 and 90. 

• Series Axis In three-dimensional charts each series is allocated its own set of 
spatial co-ordinates. This is usually, but not necessarily, 
synonymous with the z-axis. When the series data is plotted in 
columns, the labels along the series axis correspond to the column 
headings in the original data. When the series data is plotted in 
rows, this corresponds to the contents of the first column in the data 
used to generate the graph. The series axis labels and the legend 
entries display the same text. 



4  MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro 

Axes have grid lines and tick lines. The grid lines for the value axis in Figure 6.2 are the 
horizontal lines at each interval of 10. The lines that separate the labels on the category axis 
are the tick lines. These labels are also known as tick labels. 

How do I create a graph using MSChart?(Example: 
MsChartDemo.scx and ch06.vcx::acxChart) 
The MSChart control is a good starting point for working with graphs because it is a visual 
control. You can drop it on a form and see how changing its properties affect the appearance 
of the graph (Figure 6.4). Unfortunately, Microsoft stopped supporting this control on July 1, 
1999 because, being single-threaded, it is incompatible with versions of Microsoft Internet 
Explorer later than Version 4.0. However, it still ships with Visual FoxPro and, if all you want 
to do is display a simple graph in a Visual FoxPro form, it is still a good solution.  

 

##F06003.TIF 
Figure 6.4:MSChart Control properties 

 The MSChart control is associated with a DataGrid that is used to create the necessary 
series objects. So in order to get MSChart to display a graph, we first have to populate the 
DataGrid, ensuring that we get things in the correct locations. Since the Chart control is a data 
bound control, we could create an ADO Recordset that contains the data to display, and use it 
as the Chart control's DataSource. When we use a recordset (and only when we use a 
recordset) the first field is assumed to be the label for the category axis when it holds character 
data. Otherwise the first column is treated no differently than any other and is used to define a 
series object. So, if the labels for your category axis represent numeric values, you must format 
them as character strings when using an ADO Recordset with the chart control. 

Unfortunately, we cannot bind the Chart control directly to a Visual FoxPro cursor. So, 
unless we want to create an ADO Recordset from the cursor, we must iterate through the 
records in our cursor and populate the control’s DataGrid directly like this: 

LOCAL� lnCol,� lnRow�
WITH� THISFORM.oChart�
� � ***� Set� the� number� of� fields� in� the� cursor�
� � .ColumnCount� =� FCOUNT(� 'csrResults'� )� -� 1�
�



Chapter 6: Creating Charts and Graphs  5 

� � ***� Set� the� number� of� rows� to� the� number� of� records� in� the� cursor�
� � .RowCount� =� RECCOUNT(� 'csrResults'� )�
�
� � ***� Populate� the� DataGrid� Object.�
� � SELECT� csrResults�
� � SCAN�
� � � � .Row� =� RECNO(� 'csrResults'� )�
� � � � FOR� lnCol� =� 1� TO� .ColumnCount�
� � � � � � .Column� =� lnCol�
� � � � � � ***� Since� the� first� column� is� used� for� the� category� labels�
� � � � � � ***� We� must� increment� our� counter� �
� � � � � � .Data� =� EVALUATE(� FIELD(� lnCol� +� 1� )� )�
� � � � ENDFOR�
� � ENDSCAN�
ENDWITH�

Note that when we manually populate the Chart’s DataGrid like this, the labels for the 
category axis do not automatically come from the first column of the data. In fact, used this 
way, the DataGrid can only contain the actual values that will be used to generate series 
objects. Labels are added by explicitly setting the properties for them on both the category and 
value axes. 
 Having populated the grid, we can set the properties that control the output. There are an 
awful lot of these, but the most important ones for explaining what a graph shows are:  

• RowLabel: The labels collection for the category axis 

• ColumnLabel: The labels collection for the value axis 

• AxisTitle.Text: The title for the axis title object 

• AxisTitle.VtFont.Size: The font size for the axis title object 

 
 The sample form creates three different graphs on the fly and displays them using the 
MSChart control. To make the graph generation process extensible and maintainable, we store 
the graph definitions in a free table called QUERIES.DBF with this structure: 

Table 6.1:Structure of metadata used to store graph definitions 

Field Name Type Length Description 
cQueryName C 20 Keyword used to look up the record in Queries.dbf 
cQueryDesc C 50 Query description for use in end user displays 
cPopupForm C 80 Name of popup form used to obtain values for the query’s ad hoc 

where clause if one is specified 
nChartType I  Type of chart to generate ( e.g. 3-D Bar, 2-D Line ) defined by one of 

the chart type constants in mschrt20.h 
nGraphType I  Serves the same purpose as nChartType when used to generate 

graphs using MsGraph (We need both because the constants have 
different meanings in MSGraph and MSChart) 

mQuery M  The query used to obtain the data that will be used to generate the 
chart. This may include expressions like “WHERE Customer.cust_id 
= '<<pcParm1>>'” to specify an ad hoc WHERE clause because the 
TEXTMERGE() function will be used before the query is run. 

cMethod C 80 The name of a form method to run after the query is run to massage 



6  MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro 

the result cursor 
cTitleX C 50 Title for the X-axis 
cTitleY C 50 Title for the Y-axis 
cTitleZ C 50 Title for the Z-axis 

 
The form has seven custom methods that use the data in QUERIES.DBF to gather any 

required parameters from the user and generate the graph. 

Table 6.2:MSChartDemo.scx custom methods 

Method name Description 
MakeGraph Called by the onClick() method of the ‘Create Graph’ command button, this is the 

control method that generates the graph.  
DoQuery Called by the form’s MakeGraph() method, uses the passed parameter object to 

run the query contained in the mQuery field of the current record in Queries.dbf. It 
always places the query results in a cursor named csrResults so that we can write 
generic code in the form to handle the results of different queries. 

GetQueryParms Called by the form’s MakeGraph() method. This method instantiates the form 
specified in the cPopUpForm field of the current record in Queries.dbf. The popup 
form returns a parameter object which is passed back to the MakeGraph() 
method. 

MakeMonthColumns Called by MakeGraph() when it is specified in the cMethod field of Queries.dbf. It 
takes the contents of csrResults , which is a “vertical” structure with a single 
record for each month, and converts it into a “horizontal” structure with one field 
for each month in a single record.  

MakeYearColumns Called by MakeGraph() if it is specified in the cMethod field of Queries.dbf. It takes 
the contents of csrResults, which is a “vertical” structure with a single record for 
each year, and converts it into a “horizontal” structure with one field for each year 
in a single record. The number of fields in the new structure depends upon the 
range of distinct years contained in the original cursor. 

PopulateDataGrid Called by MakeGraph() to populate the graph’s DataGrid object from the 
information in csrResults. 

SetAxisTitles Uses the information in the title fields in Queries.dbf to set the axis titles. Also sets 
the fonts for the titles and labels. 

 
As you can see from Table 6.2, the form’s custom MakeGraph() method controls the 

whole process. It passes any required parameters to the form’s custom DoQuery() method. 
DoQuery(), as its name implies, runs the query from QUERIES.DBF to generate the cursor 
csrResults thatholds the data used to generate the graph. Next, when a method name is 
specified in Queries.cMethod, MakeGraph() first checks to make sure that the method exists 
and then calls it. The csrResults cursor, generated by the DoQuery() method is used by 
PopulateDataGrid() to pass data to the chart like this: 

LOCAL� lnCol,� lnRow�
WITH� THISFORM.oChart�
�
� � ***� Set� the� chart� type�
� � .ChartType� =� Thisform.cboChartType.Value�
�
� � ***� Set� the� number� of� fields� in� the� cursor�
� � .ColumnCount� =� FCOUNT(� 'csrResults'� )� -� 1�
� � �
� � ***� Set� the� number� of� rows� to� the� number� of� records� in� the� cursor�



Chapter 6: Creating Charts and Graphs  7 

� � .RowCount� =� RECCOUNT(� 'csrResults'� )�
� � �
� � ***� Populate� the� DataGrid� Object.�
� � SELECT� csrResults�
� � SCAN�
� � � � .Row� =� RECNO(� 'csrResults'� )�
�
� � � � ***� Set� up� the� label� for� the� category� axis�
� � � � .RowLabel� =� EVALUATE(� FIELD[� 1� ]� )�
�
� � � � ***� Populate� the� data� grid� with� the� numeric� data�
� � � � FOR� lnCol� =� 1� TO� .ColumnCount�
� � � � � � .Column� =� lnCol�
� � � � � � .Data� =� EVALUATE(� FIELD(� lnCol� +� 1� )� )�
� � � � ENDFOR�
� � ENDSCAN�
� � FOR� lnCol� =� 1� TO� .ColumnCount�
� � � � .Row� =� 1�
� � � � .Column� =� lnCol�
� � � � .ColumnLabel� =� ALLTRIM(� FIELD(� lnCol� +� 1� )� )�
� � ENDFOR�
ENDWITH�

The act of populating the DataGrid forces the chart to display on the form, however, at 
this point all it has it the raw data and axis labels. The final steps in the MakeGraph() process 
are to call SetAxisTitles() and then tidy up the display by setting the chart’s Projection, 
Stacking and BarGap properties to values which are more suitable than the defaults which 
MSChart supplies when the chart is re-drawn. 

Note that the PopulateDataGrid() method manipulates the Data property of the chart 
object directly. However, if you open MSCHART20.LIB in the object browser you will not be able 
to find this property. Apparently it is not exposed by the type library. However, it is 
documented in the help file (MSCHRT98.CHM) and certainly appears to be present and available. 
It is used to get, or set, a value at the current data point in the data grid of a chart. A data point 
is made current by setting the chart’s Row and Column properties to its co-ordinates. By the 
way, these properties do not appear in the object browser either, even though they too are 
listed in the help file. 

As you can see, getting a graph into a form is actually pretty easy with MSChart. 
However, including an MSChart graph in a printed report is not. MSChart does have an 
EditCopy() method that copies the chart object to the clipboard in metafile format, but there is 
no easy way to transfer the metafile from clipboard to disk without using additional software. 
Nor can you insert the Chart object into a General field, so it cannot be included in a printed 
report that way either. So if printing is a requirement, you need to use something other than 
MSChart. 

How do I create a graph using MSGraph?(Example: 
MsGraphDemo.scx) 
MsGraph is actually a cut-down version of the Microsoft Excel graphing engine. You can see 
this if you open GRAPH9.OLB in the object browser and expand the enums node (Figure 6.5).  



8  MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro 

 

##F06004.TIF 
Figure 6.5:MSGraph constants in the class browser 

Notice that all the constant names begin with ‘Xl’? There is a very good reason for this, 
they are the same names and values that are used by Excel’s graphing engine. So, if you start 
out using MSGraph to create your graphs and later decide to move to Excel automation, you 
should find that most of the code to manipulate the graph will run with no modification.  

Having a much simpler object model than Excel (Figure 6.6), MSGraph is lighter and 
quicker to instantiate and therefore the results appear more quickly too.  



Chapter 6: Creating Charts and Graphs  9 

 

##F06005.TIF 
Figure 6.6:MSGraph object model 

MSGraph gives you much more control over the graph’s appearance than MSChart does. 
It is also possible to include graphs in printed reports if you use MSGraph to generate them 
because they can be added to, and printed directly from, a General field in a table or cursor.  

##Note Icon #1 
One unpleasant surprise that we encountered when working with MSChart and 
MSGraph was the lack of consistency between the two. Not only did the 
properties, methods and events have different names, even the constants had 
different meanings! For example, a chart type of ‘1’ in MSChart produces a 2-
dimensional bar graph. In MSGraph, this is an area graph. 

The easiest way that we have found to manipulate MSGraph is to store a “template” graph 
in a General field of a table. Then, whenever we need to create a particular graph, we drop an 
OleBound Control on a form and set its ControlSource to the General field in a cursor created 
from that table. This has several benefits: 

• Avoids contention when several users try to create a graph at the same time since 
each user has his own cursor 



10  MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro 

• Does not require multiple graphs to be stored. After all, graphs are generally used to 
depict current trends and, as such, are usually generated ‘on the fly’ so it makes no 
sense to store them permanently in a table or on disk 

• Using an OleBound Control gives us direct access to the graph through its properties. 
This means we can manipulate the graph programmatically while the form is invisible 
and then display or print the final result. 

The sample form uses this technique. Notice that we are using the same data-driven 
methodology that we used with the MSChart control. Thus, the custom MakeGraph() method 
in the sample form controls the graph generation process and calls the following supporting 
methods: 

• GetQueryParms Pulls up the popup form to gather any values required for 
the query's ad hoc where clause if a pop up form is 
specified in the cPopupForm field of QUERIES.DBF 

• DoQuery Creates a cursor named csrResults by running the query 
specified in QUERIES.DBF 

• UpdateGraphData Constructs the proper format string to use with APPEND�

GENERAL� DATA and issues the command 

• FormatGraph Sets various graph properties such as axis titles, tick label 
fonts, and so on. 

Two new custom methods, UpdateGraphData() and FormatGraph() use the cursor to 
render the appropriate graph. The only differences from the MSChart sample are in the details 
of the code that is used to generate and format the graph object. 

The form’s custom UpdateGraphData() method uses the native Visual FoxPro APPEND�

GENERAL� command with the DATA clause to update the graph in the General field of  a cursor 
named csrGraph. This cursor is created from the table vfpgraph.dbf in the form’s Load() 
method. (Remember, the vfpgraph.dbf table has only one record which stores the template 
graph and which is never updated). In order to use this form of APPEND� GENERAL, the data must 
be in “standard clipboard” format which means that the fields are separated by TAB characters, 
and the records are separated by carriage returns. The first part of the method deals with 
converting the data from csrResults into the correct format. 

LOCAL� lcGraphData,� lnFld,� lnFieldCount�

 
***� Make� the� oleBoundControl� invisible�
***� and� unbind� it� so� we� can� update� the� general� field�
Thisform.LockScreen� =� .T.�
Thisform.oGraph.ControlSource� =� ''�
� �
***� Now� build� the� string� we� need� to� update� the� graph�
***� in� the� general� field�
lcGraphData� =� ""�
SELECT� csrResults�
lnFieldCount� =� FCOUNT()�
� �



Chapter 6: Creating Charts and Graphs  11 

***� Build� tab-delimited� string� of� field� names:�
FOR� lnFld� =� 1� TO� lnFieldCount� � �
� � lcGraphData� =� lcGraphData� +� FIELD(� lnFld� )� ;�
� � � � +� IIF(� lnFld� <� lnFieldCount,� CHR(� 9� ),� CHR(� 13� )� +� CHR(� 10� )� )�
ENDFOR�
�
***� Concatenate� the� data,� converting� numeric� fields� to� character:�
SCAN�
� � FOR� lnFld� =� 1� TO� lnFieldCount� � �
� � � � lcGraphData� =� lcGraphData� +� TRANSFORM(� EVALUATE(� FIELD(� lnFld� )� )� )� +� ;�
� � � � � � +� IIF(� lnFld� <� lnFieldCount,� CHR(� 9� ),� CHR(� 13� )� � +� CHR(� 10� )� )�
� � ENDFOR�
ENDSCAN�
�
GO� TOP� IN� csrResults�
�
***� OK,� ready� to� update� the� graph�
SELECT� csrGraph�
APPEND� GENERAL� oleGraph� CLASS� "MsGraph.Chart"� DATA� lcGraphData�

Having updated the General field we can bind the control on the form directly to the 
cursor and set the following properties: 

• ChartType: Determines the type of graph. Values are defined in graph9.h 

• Application.PlotBy: Determines whether series objects are generated from rows, or 
columns in the data. 

WITH� Thisform.oGraph�
� � ***� Reset� the� controlSource� of� the� OleBound� control�
� � .ControlSource� =� "csrGRaph.oleGraph"�
�
� � ***� Set� the� chart� type�
� � .object.ChartType� =� Thisform.cboGraphType.Value�
�
� � ***� Set� the� data� to� graph� the� columns� as� the� series�
� � ***� Unless,� of� course,� this� is� a� pie� chart�
� � IF� NOT� INLIST(� .ChartType,� xl3DPie,� xlPie,� xlPieOfPie,� xlPieExploded,� ;�
� � � � � � xl3DPieExploded,� xlBarOfPie� )�
� � � � .Object.Application.PlotBy� =� xlColumns�
� � ELSE�
� � � � .Object.Application.PlotBy� =� xlRows�
� � ENDIF�
ENDWITH�

 
Thisform.LockScreen� =� .F.�

It is evident from this code listing that we ran into a couple of problems when creating the 
sample form. First, we discovered that the APPEND� GENERAL command refused to update the 
graph in the general field while it was bound to the OleBound Control. We finally had to 
unbind the control before issuing the command and re-bind it afterward. Second, we had to 
explicitly tell MSGraph to use the columns as the data series for all charts except pie charts, 
overriding the default behavior which is data series in rows and which can produce some very 
odd-looking graphs. 



12  MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro 

That is all that must be done to generate and display the graph. However, we found that 
the default values produced ugly graphs and so we needed to set some additional properties to 
improve the appearance. The properties and methods available for MSGraph are, to say the 
least, comprehensive. The full list is included in VBAGRP9.CHM, the help file for MSGraph. 
However, the actual documentation is rather sparse, so, once you are certain that the item you 
are interested in actually exists in the MSGraph object model, we suggest that you look it up in 
the Excel documentation  - which is slightly better. Remember, MSGraph is just a cut-down 
version of Excel’s graphing engine.  

While it is beyond the scope of this chapter to show you how to manipulate all of these 
properties, the custom FormatGraph() method shows how manipulating a few of the graph’s 
properties changes its appearance.  

The first thing that we want to do is to set the axis titles and fonts. However, not all chart 
types have an axes collection (most notably Pie charts). The chart object exposes a HasAxis() 
method which, despite being referred to in the documentation as a Property, accepts a constant 
that identifies the axis type and returns a logical value. You would be forgiven for thinking 
that we could use this to tell us whether a given axis exists. However, it turns out that if the 
graph does not have an axes collection, trying to access this “property” simply causes an OLE 
error. So we have no alternative but to check the graph type explicitly: 

IF� NOT� INLIST(� .ChartType,� xl3DPie,� xlPie,� xlPieOfPie,� ;�
� � � � � � � � � � � � � � � � xlPieExploded,� xl3DPieExploded,� xlBarOfPie� )�

and only if the chart has axes do we then proceed to configure them, by setting the 
following properties for each axis object in the Axes collection: 

• TickLabels.Font.Size 

• HasTitle 

• AxistTitle.Text 

• AxisTitle.Font.Size 

WITH� .Axes(� xlCategory� )�
� � .TickLabels.Font.Size� =� 8�
� � lcTitleText� =� ALLTRIM(� Queries.cTitleX� )�
� � IF� NOT� EMPTY(� lcTitleText� )�
� � � � .HasTitle� =� .T.�
� � � � .AxisTitle.Text� =� lcTitleText�
� � � � .AxisTitle.Font.Size� =� 10�
� � ELSE�
� � � � .HasTitle� =� .F.�
� � ENDIF�
ENDWITH�

For the chart types that don’t have an axes collection, we only need to set the following 
properties on the Chart object: 

• HasTitle 

• ChartTitle.Text 



Chapter 6: Creating Charts and Graphs  13 

• ChartTitle.Font.Size 

but we also need to call an additional method, ApplyDataLabels(), to assign labels to the 
pie chart segments. 

One word of caution. Even though a given property or method is defined as being part of 
the object model, not all properties and methods are always available. As we found with the 
HasAxis() method, it is imperative to ensure that a specific instance of the graph actually has 
the required property or method before trying to access it. If, for any reason, it is not available, 
MSGraph hands you back a nasty OLE error.  

How do I create a graph using Excel automation?(Example: 
ExcelAutomation.scx) 
Producing graphs represents only a tiny fraction of what you can do when you harness the 
power of Excel in your Visual FoxPro applications. While VFP is an excellent tool for 
manipulating data, it is definitely not the best tool when it comes to dealing with complex 
mathematical formulae. An entire book could be devoted to the topic of Excel automation (in 
fact, several have) and a complete discussion of its capabilities is beyond the scope of this 
chapter. For specific examples using Visual FoxPro, see “Microsoft Office Automation with 
Visual FoxPro” by Tamar E. Granor and Della Martin (Hentzenwerke publishing, 2000 ISBN: 
0-9655093-0-3). 



14  MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro 

 

##F06007.TIF 
Figure 6.7:Excel automation sample form 

The example form (Figure 6.7) uses the same data-driven methodology that we have used 
with MSGraph and MSChart. The difference is that instead of formatting our data and feeding 
it directly to the graphing tool, we now have to feed the data to Excel and then instruct it to 
create a graph using that data. To do this we added a custom AutomateExcel() method that first 
creates an instance of Excel, then opens a workbook and populates a range in the active 
worksheet with the data from our results cursor: 

***� create� an� instance� of� excel.�
loXl� =� CREATEOBJECT(� 'Excel.Application'� )�
�
***� Now� add� a� workbook� so� we� can� populate� the� active� worksheet�
***� with� the� data� from� the� query� results�
loWB� =� loXl.Workbooks.Add()�
�
***� Now� fill� in� the� data�
WITH� loWb.ActiveSheet�
�
� � ***� Give� it� a� name� so� we� can� reference� it�
� � ***� after� we� add� a� new� sheet� for� the� chart�
� � .Name� =� "ChartData"�



Chapter 6: Creating Charts and Graphs  15 

�
� � ***� Make� sure� we� have� the� field� names� in� the� first� row� of� the� work� sheet�
� � ***� we� do� not� want� the� field� name� for� the� first� column� which� is� used� to�
� � ***� identify� the� categories�
� � FOR� lnCol� =� 2� TO� FCOUNT(� 'csrResults'� )�
�
� � � � ***� Convert� the� field� number� into� an� Excel� cell� designation�
� � � � ***� We� can� do� this� easily� because� 'A'� has� an� ascii� value� of� 65�
� � � � lcCell� =� CHR(� lnCol� +� 64� )� +� "1"�
�
� � � � ***� Go� ahead� and� set� its� value�
� � � � .Range(� lcCell� ).Value� =� ALLTRIM(� FIELD(� lnCol,� 'csrResults'� )� )�
� � ENDFOR�

Populating the cells in the worksheet is a little trickier than populating the DataGrid of the 
MSChart control, or sending data to MSGraph, because the cells in an Excel spreadsheet are 
identified by an alphanumeric key. The columns are identified by the letters A through Z while 
the rows are identified by their row numbers. So, to access a particular cell, you must use a 
combination of the two. For example, to identify the cell in the first row of the first column of 
the spreadsheet, you identify it as Range( ‘A1’ ). As you can see in the following code, it is 
easy enough to convert a column number to a letter because the letter ‘A’ has an ASCII value 
of 65. So all we need to do is add 64 to the field number in our cursor and apply the CHR()�

function to the result. 

� � ***� Now� just� scan� the� cursor� and� populate� the� rest� of� the� cells�
� � SELECT� csrResults�
� � SCAN�
� � � � FOR� lnCol� =� 1� TO� FCOUNT(� 'csrResults'� )�
�
� � � � � � ***� Get� the� cell� in� the� worksheet� that� we� need�
� � � � � � ***� Since� the� first� row� has� the� column� headings,� we� must�
� � � � � � ***� start� in� the� second� row� of� the� worksheet�
� � � � � � lcCell� =� CHR(� lnCol� +� 64� )� +� TRANSFORM(� RECNO(� 'csrResults'� )� +� 1� )�
�
� � � � � � ***� Go� ahead� and� set� its� value�
� � � � � � .Range(� lcCell� ).Value� =� EVALUATE(� FIELD(� lnCol,� 'csrResults'� )� )�
� � � � ENDFOR�
� � ENDSCAN�
� � GO� TOP� IN� csrResults�
ENDWITH�

This code works, but there is one major problem with it. It is slow! Poking values into 
individual cells in a spreadsheet inside of a tight loop is not the most efficient way to get the 
job done. Fortunately, we can use the DataToClip() method of the Visual FoxPro application 
object to copy the data in our cursor to the clipboard. Then we can use the active worksheet’s 
Paste() method to insert the data from the clipboard into the spreadsheet. Using the modified 
code listed below yields an improvement in performance of up to 60% depending on the 
volume of data being sent to Excel. Another benefit of using our modified version of the code 
to send data to Excel is that there is less of it. Less code means fewer bugs. 

WITH� loWb.ActiveSheet�
� � ***� Give� it� a� name� so� we� can� reference� it�
� � ***� after� we� add� a� new� sheet� for� the� chart�



16  MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro 

� � .Name� =� "ChartData"�
�
� � ***� Get� the� number� of� columns�
� � lnFldCount� =� FCOUNT(� 'csrResults'� )�
�
� � ***� Add� one� because� copying� the� data� to� the� clipboard�
� � ***� adds� a� row� for� the� field� names�
� � lnRecCnt� =� RECCOUNT(� 'csrResults'� )� +� 1�
� � SELECT� csrResults�
� � GO� TOP�
�
� � ***� Copy� to� clipboard� with� fields� delimited� by� tabs�
� � _VFP.DataToClip(� 'csrResults',� RECCOUNT(� 'csrResults'� ),� 3� )�
�
� � ***� Get� the� range� of� the� data� in� the� worksheet�
� � lcCell� =� 'A1:'� +� CHR(� 64� +� lnFldCount� )� +� TRANSFORM(� lnRecCnt� )�
�
� ***� And� paste� it� in�
� .Paste(� .Range(� lcCell� )� )� �
�
� � ***� But� now� we� have� to� make� sure� that� cell� A1� is� blank�
� � ***� Otherwise� the� chart� is� not� created� correctly�
� � .Range(� "A1"� ).Value� =� ""�
� GO� TOP� IN� csrResults�
ENDWITH�

After we transfer the data from the cursor to the spreadsheet, we are ready to create the 
graph. This is done by adding an empty chart object to the workbook’s charts collection and 
telling it to generate itself. The chart object’s SetSourceData() method accepts a reference to 
the range that contains the data together with a numeric constant that specifies how to generate 
the series objects (i.e. from rows or columns). To ensure that the display is in the correct 
format, the AutomateExcel() method forces the chart object’s ChartType property to the correct 
value: 

loChart� =� loWB.Charts.Add()� � �

 
***� Set� the� data� to� graph� the� columns� as� the� series�
***� Unless,� of� course,� this� is� a� pie� chart�
IF� NOT� INLIST(� Thisform.cboGraphType.Value,� xl3DPie,� xlPie,� ;�
� � � � � � � � � xlPieOfPie,� xlPieExploded,� xl3DPieExploded,� xlBarOfPie� )�
� � lnPlotBy� =� xlColumns�
ELSE�
� � lnPlotBy� =� xlRows�
ENDIF�
�
WITH� loChart� �
� � ***� Generate� the� chart� from� the� data� in� the� worksheet�
� � .SetSourceData(� loWB.Sheets(� "ChartData"� ).Range(� lcCell� ),� lnPlotBy� )�
� �
� � ***� Set� the� chart� type�
� � .ChartType� =� Thisform.cboGraphType.Value�

At this point we have a chart in an Excel spreadsheet, but what we really want is to 
display it in a Visual FoxPro form. The easiest way to do this is to use the chart’s SaveAs() 
method to save it to a temporary file. We can then use the APPEND� GENERAL command to suck 



Chapter 6: Creating Charts and Graphs  17 

the chart into the General field of the cursor that was created in the Load() method of the 
demonstration form. Once the graph is safely in the General field, we can quit Excel, erase the 
temporary file, and bind the OleBound control on the form to the cursor’s General field. The 
last part of the AutomateExcel() method does exactly that: 

� � ***� Save� to� a� temporary� file�
� � lcFileName� =� SYS(� 2015� )� +� '.xls'�
� � loChart.SaveAs(� FULLPATH(� CURDIR()� )� +� lcFileName� )�
ENDWITH�
�
***� and� quit� the� application�
loXl.Quit()�
�
***� insert� the� graph� into� the� general� field� in� the� cursor�
SELECT� csrGraph�
APPEND� GENERAL� oleGraph� FROM� (� lcFileName� )� CLASS� "Excel.Chart"� �
�
***� and� clean� up�
ERASE� (� lcFileName� )�
�
WITH� Thisform�
� � ***� Reset� the� controlSource� of� the� OleBound� control�
� � .oGraph.ControlSource� =� "csrGraph.oleGraph"�
� � .LockScreen� =� .F.�
ENDWITH�

Now that the graph is bound to the OleBound control on the form, we can manipulate its 
appearance in much the same way that we did for MSGraph. As a matter of fact, the code the 
in form’s custom FormatGraph() method is almost identical to the code in the previous 
example. Other than changing references to Thisform.oGraph.Object to 
Thisform.oGraph.Object. ActiveChart, all we had to change for our Excel automation sample 
was to add this line: 

***� Now� set� the� axes� at� right� angles� for� 3-d� bar,� column,� and� line� charts�
IF� INLIST(� .ChartType,� xl3DColumnClustered,� xl3DColumnStacked,� ;�
� � � � � � � � � � � � xl3DColumnStacked100,� xl3DBarClustered,� xl3DBarStacked,� ;�
� � � � � � � � � � � � xl3DBarStacked100,� xl3DLine� )�
� � Thisform.oGraph.Object.ActiveChart.RightAngleAxes� =� .T.�
ENDIF�



18  MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro 

 

##F06008.TIF 
Figure 6.8:Default perspective of 3-D graph generated by Excel 

This is because MSGraph, by default, creates a pretty 3-dimensional graph with the axes 
at right angles to each other. Excel does not. Before we added this line of code, the graph 
looked like Figure 6.8. As you can see, it had an unappealing ragged appearance. 

The graph object has a huge numbers of properties and methods that you can use to 
manipulate its appearance which are described in the Excel 2000 help file, VbaXl9.chm. In 
addition to the documentation, our sample form makes it easy for you to experiment with the 
effect of changing properties. All you have to do is run the form, click the ‘Create Graph’ 
button, and type this in the command window: 

o� =� _Screen.ActiveForm.oGraph.Object.ActiveChart�

You can then call the methods of the charts object or change its properties and 
immediately see either an OLE error or a change in the appearance of the graph in the form.  

Using Visual FoxPro 7 makes the discovery process even easier because of IntelliSense. 
Once you have a reference to the chart object, you can see a list of all the methods and 
properties that apply (Figure 6.9). 



Chapter 6: Creating Charts and Graphs  19 

 

##F06009.TIF 
Figure 6.9: Exploring the Excel object model from the VFP 7.0 command window 

Conclusion 
A picture is indeed worth a thousand words. Including graphs and charts in your applications, 
whether displayed in a form or printed in a report, adds a lot of pizzazz and a professional look 
and feel. In the past, adding this functionality was more than a little painful because of the lack 
of documentation and good working examples. We hope that this chapter has given you a 
better starting point than we had when we wrote it and that you can use the examples to create 
some really spectacular graphs of your own. 


