Chapter 8: Integrating PDF Technology 1

Chapter 8
Integrating PDF Technology

The Adobe Acrobat Portable Document Form (PDF) is proven technology that allows a
Visual FoxPro developer to enhance the output generated by their custom applications.
This chapter will show how you can integrate PDFs, extend the presentation of Visual
FoxPro reports, and allow users to input data through PDF files into a Visual FoxPro
application.

Generating Acrobat Portable Document Form (PDF) files has become commonplace and is as
simple as printing output to a printer. If your customers are anything like our customers, they
are asking for more and more integration of PDF output with custom applications. The Adobe
Acrobat website has a quote on it that we think bests describe the Acrobat technology:

“Adobe® Portable Document Format (PDF) is the open de facto standard for electronic
document distribution worldwide. Adobe PDF is a universal file format that preserves all the
fonts, formatting, graphics, and color of any source document, regardless of the application
and platform used to create it. Adobe PDF files are compact and can be shared, viewed,
navigated, and printed exactly as intended by anyone with free Adobe Acrobat® Reader®
software. You can convert any document to Adobe PDF using Adobe Acrobat 5.0 software.”

Adobe PDF files can be published and distributed anywhere: in print, attached to email,
posted on Internet sites, distributed on CD-ROM, viewed on a Palm or Pocket PC device, or
even displayed in a Visual FoxPro application using an ActiveX control provided by Adobe.
In a nutshell, any information that can be printed to a Windows printer can be generated into a
PDF file. The PDF files are typically smaller than their source files, and can be downloaded a
page at a time for fast display on the Web.

PDF files also provide an alternative way of sharing documents and application output
over a broad range of hardware and software platforms without sacrificing any formatting that
can be lost using HTML.

Which version of Acrobat do | need?

Acrobat comes in three flavors, Reader, Approval, and the full featured (known as plain old
Acrobat). Adobe Acrobat was at version 5.0 when this book was written.

The reader is available free of charge and can be downloaded from Adobe’s website. The
generated PDF file can be viewed by anyone who has the Adobe Acrobat Reader. The Adobe
Acrobat Reader displays the PDF file for viewing and has a number of features that include
printing of the document, searching for text, and emailing the file to someone else. Users who
just view the output generated by a custom Visual FoxPro application in PDF format can use
this flavor of the product. Acrobat Forms can also be submitted to a web process using the
Reader version of the product.

You need the full featured Acrobat application to be able to create PDF files, create
Acrobat Forms, write JavaScript within a PDF, add electronic comments, or convert web pages
to PDF. Custom applications developed with Visual FoxPro that create a PDF file using an
Adobe product will need the full version of Acrobat.

2 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

##NOTE ICON

An individual Acrobat license is required for every workstation that will generate
PDF files from your custom application. This means if you have 50 users working
at 50 different workstations that access PDF generation functionality in the
application, your customer will need 50 licenses at approximately US$225.

Acrobat Approval is available to save Acrobat Forms, apply e-signatures, spell check
contents of a PDF, and to secure documents so others cannot make changes. If users are
entering data into an Acrobat Form and need to save this data to the server or workstation hard
drive, they can use this version of the product. Using Acrobat Approval can provide significant
deployment savings if generating PDF files is not a feature that is required, but form data
needs to be saved.

What is needed to generate a PDF file?

Acrobat PDF files are generated via a printer driver loaded on the client PC. These are printer
drivers just like ones for a laser or color printer. These print drivers have the intelligence to
generate files in the PDF format. As noted before, these files retain all the needed information
to duplicate the output exactly as the original application intended it to be printed.

*® Printers and Faxes aEE
File Edit Wiew Favorites Tools Help l'(r
W) Back) ¥) search [Folders [Of+

: Address |':,;g Printers and Faxes v | co

s FY
— Acrobat Distiller s
Printer Tasks =
Ready
@ Add a printer
&n Instal alocal fax = . Acrobat PDFWriter
printer =1 0 -
Ready
See Also Amyuni PDF Converter
g :ai 0
2] Troubleshoot printing Ready F
- —

##IMAGE: MF08001.tif
Figure 8.1 These are the printer drivers loaded when Acrobat and Amyuni drivers are
installed.

You can purchase the Acrobat product around US$225. When you install Acrobat (not the
Reader) you get two printer drivers loaded. The PDFWriter is an older, less sophisticated
driver. Distiller is the more powerful and more current driver. We have had good success with

Chapter 8: Integrating PDF Technology 3

the PDFWriter and find the limited features more than sufficient for our implementations. We
have also found that it is faster in performance, which is good if the tradeoff of functionality is
not limiting.

#NOTE ICON

If you plan to use the Acrobat PDF Writer driver you need to know that it is not
loaded by default when installing Acrobat 5.0. You will need to select the custom
setup and make sure to pick the PDF Writer to be installed.

One alternative to Acrobat that we have used successfully is the Amyuni PDF Converter
(PDF Compatible Printer Driver). This runs $129 for a single-user license for one platform and
$189 for all the Windows platforms (3.1, 95, 98, Me, NT, 2000, and XP). The Developer
Version contains the ActiveX interface and is purchased one time ($800 for single OS
platform, $1150 for all platforms) and has a royalty-free distribution license. The Developer
Version only allows features to be accessed via the ActiveX interface and does not have any
user interface, and no permanently loaded printer driver. This works well for Visual FoxPro
(and other Visual Studio tools) based applications. The printer driver only exists at the time the
driver is used and is generated on-the-fly when the ActiveX control is accessed to generate the
PDF file. If your users need the user interface to the PDF Converter then they can get a site
license for $2500 for a single OS platform or $3600 for all OS platforms. There is a new
Professional version with encryption and web optimization available.

Okay, this sounds good so far, but wait there is more! Amyuni also has Visual FoxPro
specific examples to boot and they actually advertise in Visual FoxPro periodicals! There is
even more; they have even gone as far as developing an FLL API file for use with Visual
FoxPro. Now the FLL solution is not always recommended since the ActiveX interface works
well (unless you need bookmarks), but it is nice that Amyuni is showing support for Visual
FoxPro in this fashion.

We are not trying to include an ad here for Amyuni, just trying to provide a baseline so
you can evaluate the advantage or disadvantage of this product line. We advise you to check
out the Amyuni.com website for all the details.

How do | determine which PDF product to license?
All PDF creation features are available in both the Adobe PDFWriter/Distiller and Amyuni
PDF Converter drivers. The Amyuni PDF Converter gives an unlimited distribution product
with the Developer Version. You or your client will need to purchase a full copy of Acrobat
for every PC that will generate PDF files. In a small company (less than 6 users) it may be
better to go the Acrobat route; larger sites or vertical market apps should seriously look at the
Amyuni product. Adobe does have an Open Options Site License Program for organizations
with 1,000 or more workstations. Contact Adobe for more specifics. Acrobat 5.0 also has the
interactive development environment as well which may be something you or your customers
will need.

Once the Acrobat printer driver is loaded it automatically becomes available to all
Windows’ applications and is actively visible in several applications already installed. For
instance, all the Microsoft Office (v97, 2000, and XP) applications have the PDFMaker

4 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

macro/toolbar installed and available. The Amyuni version will not be available to other
applications unless you get the site license.

There are other PDF writers available similar in functionality and implementation. We are
most familiar with the Amyuni product which is why we have chosen it for discussion in this
chapter. We are not endorsing this product over the others, just trying to express
implementation ideas for these tools.

How can | use PDF technology in my Visual FoxPro
apps?

An example of the use of these components is the company accountant publishing the sales
results tracked in a custom database application (naturally developed by a top gun Visual
FoxPro developer) to a PDF file. This file could be transferred via email to the sales force and
they could view it on their laptops for review. Changes can be emailed back to accountant and
updated in the database. The accountant recreates the PDF file and posts it on the company
website. Now all employees in the company can hit the company website to see how well the
company sales are going.

So why publish to the PDF format instead of HyperText Markup Language (HTML)
format. HTML was designed for single page documents with limited formatting capabilities.
The presentation of the document differs from one computer to another and from one web
browser to another. Also, to transmit a single page, one needs to transmit many files containing
different parts of the page (one file for each graphic). PDF documents can have hundreds of
pages contained in one file with all the formatting capabilities that modern applications
provide.

How do | output Visual FoxPro reports to PDF using

Adobe Acrobat? (Example: PromptPDF.prg)

Once the full version of Adobe Acrobat is installed, generating Visual FoxPro reports to a PDF
file is quite simple. First you make sure that the PDF Printer Driver is set as the default printer
for the Visual FoxPro application. This can be any Visual FoxPro report. If the report has a
hard-coded printer driver in the TAG, TAG2, and EXPR fields for a printer other than the
Acrobat driver, the following code does not work. No special driver setting has to be made in
advance, just use your standard methodology of outputting a report to the printer:

*[OCGeneri cCcal | Dwher eVFPOpr onpt st heOuser Owi t h(t heO
*printerOdi al ogleachCti melt helr eport 00 sCrun0d
REPORTOFORMCont act Li sti ngl O

0O00000TOOPRI NTEROPROMPTEINOCONSCOLED

OR

*[Generi clcal | Osoluser Osel ect sCpri nt er Cbef ored
*[report U sOprinted, Cbut i t Ochanges™ heVFPOPr i nt er O
SYS(1037) O

REPORTOFORMICont act Li st i ngOTOOPRI NTERONOCONSOLED

OR

Chapter 8: Integrating PDF Technology 5

*[Cal | (¢ hat ChasUalhar dcodedset ti nglt olidr i velt heldd
*[r eport [t ot heAcr obat OPri nt er, [yet Osaves[t hed
*[ol dCprinterCsettinglforresetdater. O

| cPDFPri nt er O=[1" Acr obat OPDFW i ter" O

| cA dPrinter O=0SET(" PRI NTER', [(2) O

O

SETOPRI NTEROTOONAMELY | cPDFPrinter) O

O

REPORTOFORMICont act Li st i ngOTOOPRI NTERCONOCONSOLED
O

SETOPRI NTEROTOCNAMVELY | cO dPrinter) O

Once the report is sent to the printer via the REPORT FORM command, the following
dialog is presented:

Save PDF File As
Savein: |b Chapterl ﬂ 5 Ef-

TR i ctisting oot
Save as type: |PDFfiIes [~.POF) j Cancel

Edit Document Info. | [\iew POF File

#HIMAGE: MF08002.tif
Figure 8.2 The Save PDF File As dialog allows the user to specify the name of the
PDF file as well as specific document properties.

Optionally you can hit the Edit Document Info. commandbutton on this dialog to bring up
the Acrobat PDFWriter Document Information dialog.

6 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

Acrobat PDFWriter Document Information (%]

Title: ||:Dr|tactlisting.frx

Subject: |Chapter & Sample

Author: |rsu:hum 02

Keywords: [VFP, PDF|

Creatar: Microgoft Visual FoxPro v7.0
Producer: Acrobat PDFPWhter 5.0 for Windows NT

Created: Saturday, December 29, 20071 01:34:23

Ok | Cancel

#HIMAGE: MF08003.tif
Figure 8.3 The PDF Document Information provides the readers of the document key
details.

This information is stored (and can be optionally reviewed) in the PDF file that is
generated:

Chapter 8: Integrating PDF Technology 7

2 2% p Bk

f Signatures{ﬁf Cummenm.\?{ Thumbnailz \[Bookmarks ™.

GRASE HAB-EO0 1K) «s o -e NOEE - Q

Develﬂpedas .an ex.afﬁple.f-or chaﬁmer In
MegaFox

b~

Name

Bodnar, Steve Geeks and Gurus, Inc. sjbodnar@geeksandgurus.com
Mohammed, Sam Geeks and Gurus, Inc. simohammediigesksandgurus.com
Sawyer, Steve Geeks and Gurus, Inc. sasawyendigeeksandgurius.com
Schummer, Rick Geeks and Gurus, Inc. raschummer@gesksandgurus.com

&

Document Summary 3]

File: D:\Data\WinWord\MegaFox\Chapters\contactlisting .pdf

K>

Title:] bontactlisting.frx

=

Subject:] Chapter 8 Sample

Author:] rschum02

Keywords: | VFP, PDFe
Binding: |Left Edge -

Creator: Microsoft Visual FoxPro v7.0
Producer: Acrobat PDFWriter 5.0 for Windows NT
Created: 03/16/200209:23:33 AM

Medified: Mot Available

File Size: 5.7 KB (5,796 Bytes)

HARgES D KE

Security: MNone

PDF Version: 1.2 (Acrobat 3.x) Fast Web View: Mo
Page Size: 8.5inx 11in Tagged PDF: Mo
Number of Pages: 1

OK | Cancel ‘ |
vil
] Mo« 10f1 M BEETTICTI S e »
—

##IMAGE: MF08004.tif
Figure 8.4 The Document Summary dialog within Acrobat will display the PDF
Document information for the reader as entered by the document creator.

The document summary information is often used by website search engines and indexers
to make available the contents of PDF files to the people browsing their site.

What are the errors to trap when printing to PDFs? (exampe:
cusAmyuniPDF::Error() of g2pdf.vcx, NoHandsAmyuniPdf.prg)

The key to printing to PDFs (and any other printer driver selection process) is to capture the
Visual FoxPro “Error loading printer driver” (error 1958). Make sure to include this trap in
your error scheme or swap in a special error trap into the report printing mechanism.

LPARAMVETERSLY nEr r or, [t cMet hod, Tt nLi ned
[}
DOCOCASED

8 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

OOCASEL: nEr r or 0=[119580

O0O0THI S, I DriverError =00 T. O

OOOTHERW SED

OOOOAERROR(t hi s. aErrorlnfo) O

O

00001 FODODEFAULT(t nError, Ot cMet hod, [t nLi ne) O

OOO00OMESSAGEBOX(* Ther e[was Uallpr obl eniJencount er edwhenlcr eat i ng™ (+(0; O
DDO0000000000000 t heOPDFOFi | ed)(" O+t hi s. cPDFFi | eName[#+[1') . " [(#0; O
OIDO0O000000000000CHR(13) (+OCHR(13) THT O

DDO0000000000000 hi s. aBrrorl nfo[2] G+ O " CH0;, O
ODOO000000000000ALLTRI MCSTR(t his. aErrorinfo[1])) w) ", 3 O
DD0000000000000000 0+ 48, 0_SCREEN. CAPTI ON) O

OOOCENDI FO

ENDCASED

O

RETURNO

The biggest gotcha to watch when printing Visual FoxPro reports to PDF is getting bit by
the hard coded printer details. One of the better-known problems with Visual FoxPro reports is
accidentally hard coding printer driver information that gets stored in the report metadata. The
information is stored in the report metadata file (FRX) in the EXPR, TAG, and TAG2
columns. If these fields have specific printer information included in the columns, Visual
FoxPro will attempt to print to that printer and not the PDF driver. The symptom of this
problem is having output printed on the printer when you attempt to generate a PDF file. We
discussed this problem and a solution in 1001 Things You Wanted to Know About Visual
FoxPro on page 542, “How to remove printer info in production reports”, and on page 496,
“How to remove the printer information from Visual FoxPro reports”.

How do | run PDF reports unattended using Acrobat?
(Example: NoHandsPDF.prg)

In a previous section we discussed the basic Visual FoxPro report print to PDF process. While
this process is straightforward, it has a significant drawback in the fact that it needs an end
user to interact and enter in a file name before the PDF can be generated. What happens if you
want to automatically generate a slew of reports from Visual FoxPro during a batch process
that happens in the middle of the night? You or your clients could hire an operator that sits and
watches the process and types in the filenames as they are prompted, or you can head directly
to the West Winds web site and get the wwPDF50 ZIP file.

##WEB ICON

Rick Strahl has written plenty of code that allows Visual FoxPro developers to
generate PDF files without the printer driver interaction prompting for a PDF
filename. This class (wwPdf.prg) is available from http.//www.west-
wind.com/Webtools.asp and is available as part of the chapter source code
downloadable from the Hentzenwerke website. The newest download available
from West Wind has a change in it to better work with Acrobat 5.0. There are
other classes included that work with Acrobat Distiller and the ActivePDF drivers.

Chapter 8: Integrating PDF Technology 9

The Acrobat printer driver is driven on settings available in the WIN.INI file. The
wwPDF40 class manipulates the Acrobat filename settings in this INI file. The implementation
of hands free Acrobat printing is straightforward:

*OPartial Oistingdf romNoHandsPDF. prgQd
SETOPROCEDURELT OCMWwWPDFCADDI T1 VEO

SETOPROCEDURELT OOWwAPI CADDI Tl VEO

O

| oPDF=0CREATEOBJECT(" wwPDF40') O

| cFi | eNameOO=" Cont act Li st " [+ cNow+[I'. pdf " O

| cQut put Fi | e=0UADDBS(SYS(2023)) (+ cFi | eNanel

O

*UsePri nt Report () 0 nst eadCof OPri nt Report ToString() O
* O MPORTANT: OFRXOnust Chavelpri nt er Ospeci fi edJas(OPDFW i ter O
| oPDF. Pri nt Report (" ContactListing",dcCQutputFile)d

O

* [Dest r oy [t heOPDFO(hj ect O

| oPDF=0. NULL. O

Set procedure to two programs that contain all the class definitions necessary to
manipulate the needed operating system INI files that contain the information used by the
Acrobat PDF printer driver. Then create the PDF file without the user being prompted for a
file name. The sample code is creating the PDF output in the Visual FoxPro temp directory.

You might be wondering why the sample code has a SETOREPROCESS command. The
wwPDF classes work around an issue with the PDF Writer. The printer driver is single
threaded. This means that it needs to generate one report at a time. The wwPDF class sets up a
table and performs a record lock until the PDF is generated. This concept of enforcing the
single threaded process is called semaphore locking. If you are simultaneously printing a
massive amount of PDFs you might consider a different solution since this class will slow the
overall throughput. Websites that generate PDF documents on the fly might want to consider
the ActivePDF since it is multi-threaded and can take advantage of multiple processors.

There is a complete whitepaper on this topic written by Rick Strahl “Web reports with
Adobe Acrobat Documents” at http://www.west-
wind.com/presentations/pdfwriter/pdfwriter.htm. Rick Strahl also details how the PDF writing
process is single threaded (important on a web server process) and exactly how his classes
work with semaphore locking to make sure that the reports are handled one by one. If your
web application is generating thousands upon thousands of Visual FoxPro reports in this
manner the throughput may become an issue.

How do | run PDF reports unattended using Amyuni?
(Example: NoHandsAmyuniPDF.prg, cusAmyuniPDF::g2pdf.vcx)

In the previous section we demonstrated building PDF files in a hands-off mode (requiring no
user interaction). This technique requires two tools, the full Acrobat version and the West
Winds PDF classes. Rick Strahl is kind enough to offer his classes for free, but the Acrobat
product lists for approximately $225 a license. If you are running this solution you need to buy
a license for each user (or web server) that is generating these documents. This may not sound
bad for a shrink-wrapped package that costs in the tens of thousands of dollars, but what if all
50 users need this functionality? You could be adding another $10,000 to the project

10 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

implementation costs. This is where a product like the Amyuni PDF Converter comes into
play.

##NOTE ICON

Ampyuni provides a full demonstration version of the Amyuni PDF Converter. We
have included it in the chapter downloads, but a more current version might be
available at the Amyuni website (www.Amyuni.com). The file name in the
downloads is PdfSUDemoEn.exe. This needs to be installed to run the samples.
The only difference between the demo and registered version is that a watermark
is included on each PDF generated with the demo version.

The PDF Converter is accessed in code via an ActiveX interface or a FLL library. The
examples we will demonstrate here is for the ActiveX interface. The class example
(cusAmyuniPDF class in G2Pdf.vcx, available in the chapter download file from
Hentzenwerke.com) handles both editions so feel free to review the code for the differences
between the two approaches. First you must instantiate the control and initialize it.

thi s. oPDFPri nt er 0=C0CREATEOBJECT(" CDI NTF. CDI NTF") O
this.oPDFPrinter. Driverlnit("PDFCConpatibl elPrinterDriver")O

After the printer driver is initialized we need to set up the parameters to achieve the
desired output. This process is handled through the SetDriverParameter() method. There are
several parameters available. We have set up several properties in the cusAmyuniPDF custom
class to handle the options. The method code is as follows:

* OcusAmyuni PDF. Set Dri ver Par anet er () Onet hodd

* [(Dolnot Cpr onpt Cf or [f i | eCnamed

#DEFI NECc ¢ PDF_NOPROVPT DODOO0O000™L O

*[Uselfi | eOnamelset [byOSet Def aul t Fi | eNanme

* (el sefluseddocunent Cnaned

#DEFI NEUc ¢ PDF_USEFI LENAVECDOOOOOO™®20

*[Concat enat e[ff i | es, OdoOnot Coverw i teld

#DEF| NEUc ¢ PDF_CONCATENATELOOO00040

*[Di sabl eCpagelcont ent Oconpr essi ond

#DEFI NECc c PDF_DI SABLECOVPRESSI ONCC8 0

* CEnbedf ont sCOused nCt he[nput Odocunent O

#DEFI NECc ¢ PDF_EMBEDFONTSOOOCO0OO01 60

* Enabl e(br oadcast i ngOof OPDFCevent sO

#DEFI NECc c PDF_BROADCASTMESSAGESI320

O

| FONOTO!I SNULL(t hi s. oPDFPrinter) O

O OSet [t he(dest i nati on¥i | eChare. O

0t hi s. oPDFPri nt er. Def aul t Fi | eNane[=[t hi s. cPDFFi | eNanel
O

O OSet [r esol uti ont ot ot heOdesi redOqual i tyQ

O hi s. oPDFPri nter. Resol uti on0O000OOC=CY hi s. nResol uti onO
O

0O OUpdat eddri ver 0 nf oOwi t h(r esol uti onl nf ormati onO
0t hi s. oPDFPri nt er. Set Def aul t Config() O

O

[ONot e: [Messagelbr oadcast i nglshoul dlbelenabl edd
0O 0 nCor der [t ol nser t Cbookmar ksCf r omiVFP. O

07 (But Oseelt helnot esli n(t heOSet Bookmar ket hod

http://www.amyuni.com/

Chapter 8: Integrating PDF Technology 1

0k hi s. oPDFPrinter. Fi | eNanmeOpti ons=; O

000N 1 F(this. | Pronpt, 00, OccPDF_NOPROVPT+Ccc PDF_USEFI LENAVE) [H(T O
0003 1 F(t hi s. | Booknar ks, CccPDF_BROADCASTMESSAGES, [0) [H(5; O
0000 I F(t hi s. | Concat enat e, OccPDF_CONCATENATE, [0) [+[3; O

0003 1 F(t his. | Conpr essi on, [0, CccPDF_DI SABLECOVWPRESSI ON) [H(; O
0003 1 F(t hi s, | EmbedFont s, OccPDF_EMBEDFONT, [00) O

O

0 OSavet heCcur r ent OW ndows Odef aul t Cpri nter O

O OsoOwelcanCrestorelitd ater. O

Ot his. oPDFPrinter. SetDefaul tPrinter()O

ELSEDO

07 Handl eOsett i ngsOvi alt heOFLL. O

ENDI FO

O

RETURNC

Now the driver is ready to produce the PDF file. At this point you have made settings to
have the user not prompted for a filename (default in this example), whether bookmarks are
generated (FLL option only), if the contents are concatenated with previous output, if the PDF
is compressed (a default for PDFs), and if fonts are embedded. This is not that much work.
The Visual FoxPro report can now be generated with the following code:

*OSet [t heVFPCpr i nt er Chamelt ot heOPDFCpri nt er, CandCpri nt Ot helreport. O
this.cddPrinterName=OSET("printer", [2)0

SETOPRI NTEROTOCNAVELK THI S. cAmyuni Dri ver) O

REPORTOFORM(t hi s. cRepor t Nane) [NOEJ ECTNOCONSCLEOTOTPRI NTERO

The class also handles the resetting of the original printer driver and cleans up the object
references in the Destroy method of the object. Modifications or enhancements to this class
could also forward a text file or HTML output generated from your applications to a PDF file
as well. Amyuni has other drivers available to support creation of HTML and text (via the
Rich Text Format).

If you are using the Amyuni FLL interface you will need the FllIntf.fll file provided by
Amyuni. This file is installed in the same directory as the Amyuni ActiveX controls and
sample files. Even if you are not using the FLL interface you will need to include this directory
in the Visual FoxPro path to recompile the class since the code is included for this option and
the FLL is referenced.

How do | email a Visual FoxPro report? (example: MailPDFBatch.prg)
One question that gets asked frequently on the support forums is: How can I email the results
of a report? One approach is to run the Visual FoxPro report to a PDF file and have the
application attach it to an email. There are a number of email components available that
integrate with Visual FoxPro. It is beyond the scope of this chapter to get into the nuts and
bolts of automating a MAPI compliant email client, but we wanted to reveal one of the most
useful implementations of Acrobat PDFs in our applications. There are numerous examples of
integrating email with Visual FoxPro in Chapter 4: Sending and Receiving E-mail. This
example will leverage another class from West Winds called wwIPStuff.

Listing 8.1 A program that uses the wwiIPStuff class and DLL from West Wind to email
a Visual FoxPro report as a PDF file.

12 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

LPARAMETERSLY | Emai | O

O

#| NCLUDELF oxpr o. hO

O

SETCEXCLUSI VECOFFO

SETODEL ETEDIONCO

SETOPROCEDURELTOCWwwPDFCADDI Tl VEO

SETOPROCEDURELTOCMWWAPI CADDI TI VEO

SETOPROCEDURELCITOOWAUE | | sCADDI Tl VEO

SETOPROCEDURELTOWwWEval TADDI TI VEO

SETOCLASSLI BOOTOOWAM PSt uf f CADDI Tl VEO

O

OPENCDATABASEpdf sanpl e

SETODATABASEOTO pdf sanpl eO

O

| FONOTOUSED(" cur Mai i ng") O

OOUSECpdf sanpl e! v_geekscont act | i st 0 NDOOAGAI NCALI ASCcur Mai |i ngO
ELSEO

OOREQUERY(" cur Mai | ing") O

ENDI FO

O

| FONOTOUSED(" cur Li st") O

OOUSECpdf sanpl el v_geekscont act | i st O NCOOAGAI NCALI ASCcur Li st O
ELSEO

OOREQUERY(" cur Mai | ing") O

ENDI FO

O

| FONOTLUSED(" Ermai | I nf 0") O

OOUSECpdf sanpl e! Emai | 1 nf o0 NOOOAGAI NCALI ASCEmi | | nf o0

ENDI FO

O

| FONOTOUSED(" Erai | Hi st ory™") O

OOUSECpdf sanpl e! Enai | Hi st or yOl NCOOAGAI NCALI ASCEmai | Hi st ory O
ENDI FO

O

| ol PMai | CFOCREATEOBJECT(' ww PSt uff') O

| oPDFO00=0OCREATEOBJECT(' wwPDF40') O

O

SELECTOcur Mai |'i ngd

O

SCANC

OO cFi | eNameOOO=CALLTRI M cur Mai | i ng. Fi rst _Nane) (0 O
DOOO0000000000000ALLTRI M cur Mai |i ng. Last _Nare) (0 O
DDO00000000000000ALLTRI M STR(cur Mai | i ng. Contact _I d)) T[T, pdf " O
00 cCut put Fi | eCFOADDBS(SYS(2023)) (HO cFi | eName

O

O OCener at e[t heOPDFCY i | e

OOSELECTCeur Li st O

0 oPDF. Print Report (" ContactListing",dcQutputFile)O

O

0 ol PMai | . cMai | Server TECALLTRI M emai | i nfo. cMai | Serve) O
0 ol PMai | . cSender Emai | C=OALLTRI M enmi | i nf o. cSender) O

0 ol PMai | . cSender Nane[I=CALLTRI M emai | i nf 0. cSender Nane) [
O

0 ol PMai | . cReci pi ent OTECALLTRI M cur Mai | i ng. Enai | _Nane) 0
0 ol PMai | . cSubj ect OO0O=0CALLTRI M enmi | i nf o. cSubj ect) O

0 ol PMai | . cMessageJJI=CALLTRI M emai | i nf o. cMessage) ([O
IDOOOOOO00000000000000000CALLTRI M emai | i nfo. ¢cSignature) O
O

OO OHer el sOwher eDwelat t achtt heOPDFCY i | e

Chapter 8: Integrating PDF Technology 13

00N FOFI LE(l cQut put Fil e) O

000 ol PMai | . cAttachnment OC=0 cQut put Fi | ed

OOENDI FO

O

00 cSent MsgC=' To: ' [+ ol PMai | . cReci pi ent (H(; O

OOO00000000000CHR(13) CHO' From O' O+ ol PMai | . cSender Enmi | [+, O
DOO00000000003 | F(EMPTY(| ol PMai | . cCCLiI st), OSPACE(0) , OCHR(13) (' CC: (' H5;, O
OOOOOOOCOO00C0OCO00000000000000000000000000 ol PMai | . cCCLi st) [+ O
0OO00000000003 | F(EMPTY(| ol PMai | . ¢BCCLI st), OSPACE(0) , OCHR(13) (H[I' BCC: [H5;, O
OOOOOCOOCOO00C0OCO0000000000000000000000000000 ol PMai | . ¢BCCLI st) (H[; O
DOO00000000000CHR(13) ' Subj ect : [[+ ol PMai | . cSubj ect (H(; O
OOO0000CO00000CHR(13) [+ ol PMai | . cMessagel

O

07 OOnl yOsendt he i st Cof Opr oducedO

0O FOFI LE(I cQut put Fil e) O

000 OSendConl y0i f Opassi ngCpar anmet er, Cal | owsCt esti ngd

OO0 Owi t hout Osendi ngt helCerai | O

00O F&x | Emai | O

00000 | Resul t =0 ol PMai | . SendMai | () O

OOOCELSED

00000 | Resul t C=OLF. O

OOOCENDI FO

OCOELSED

0000 | Resul t =0 F. O

OOENDI FO

O

OO FD Il Resul t O

OOO0WAI TOW NDOW' NoCemai | Onessaget o (+0 ol PMai | . cReci pi ent T+ O(" O+ O
N0000000000000d ol PMai | . cError MsgCH) " ONOMAI TO

0000 cSent Msg=0 cSent Msg+OCHR(13) (HOCHR(13) T+, O

O0O00000000000000 | F(t] Emai |, 01 nt ended™t oCernai | ", (1" Not [0 nt endedt oUenai | ") [H; O
IOO0OOOOO000000000CHR(13) T O

OOOO0000000000™ ERROR: ' [+ ol PMai | . cError MsgOd

O

0000 NSERTOI NTOZenmi | hi st ory(t Ti meSt anp, O Sent Emai |, OrMessage, CcReci pi ent) [O
OOOOOCVALUESO(DATETI ME() , O. F., O cSent Msg, Ccur Mai | i ng. Emai | _Nane) O

OCOELSED

OO0O0WAI TOW NDOWT* Sent Oressagelt o [+ ol PMai | . cReci pi ent ONOWAI TO

00001 cSent Msg=0 ¢Sent Msg[+CHR(13) [(HOCHR(13) (+[1' Messagelisent [lsuccessful [y" [
O

0000 NSERTOI NTOCenmi | hi story(t Ti meSt anp, O Sent Emai |, OrMessage, OcReci pi ent) [O
OOOOOCVALUESH(DATETI ME() , O. T., O cSent Msg, Ccur Mai | i ng. Emai | _Name) O

OCOENDI FO

ENDSCANC

O

| oPDFOOOC=0 NULL. O

| ol PMai | C=0. NULL. O

O

USEOI NO(SELECT(" cur Mai l'ing")) O

USEOI NO(SELECT("cur List")) O

USEOI NO(SELECT(" emai | hi story")) 0O

USEOI NO(SELECT("emai | i nfo")) O

USEOI NO(SELECT("contacts")) O

O

RETURNO

##WEB ICON

14 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

The example code list is only a partial list of the code in the example program.
The wwiPStuff included in the chapter downloads is a shareware version that is
available on the West Wind website (www.west-winds.com). It demonstrates the
simple implementation of the wwIPStuff class and corresponding DLL file, which
are included in Web Connect, or can be purchased separately. The shareware
version will display a WAIT WINDOW, but allows complete concept/prototype
testing before purchasing the commercial product.

The base idea is to generate the PDF file and attach it to an email. Since this
implementation directly sends the email via Simple Mail Transfer Protocol (SMTP), it
bypasses all email clients. This means that there will be no audit trail of the sent mail item in a
Sent Item folder. While it is nice to trust that the email is safely transferred via the Internet, our
customers like to have a record that the email was sent and some details to what was included.
The second half of the program provides a basic audit trail of the email, if it was sent
successfully, and if not, what error occurred.

To test this program out you will need to change a few columns in the Emaillnfo table.
The cMailServer is the SMTP server for your email account, cSender is your email address,
cSenderName is your name, cMessage is the narrative contents of the message in the email,
and cSignature allows for an optional signature line for the message.

We set up the program with a parameter (tIEmail) so the program can be run without
actually sending the email. If you run this program with the parameter set to .T., please change
the email addresses in the Contacts table to something you will receive and not the chapter
author and his partners.

How can | replace the Visual FoxPro Report print

preview? (Example: AltPreview.scx)
If you poll Visual FoxPro developers and have them note one weakness in Visual FoxPro, my
guess is that a big percentage of them would point to the Report Designer Preview mode. It has
not had a major enhancement since the days of version 2.x. There are plenty of issues with the
display depending on the printer drivers, video drivers and the monitor resolution. The zoom
feature has limited percentage settings. It has no drill down capability and shows its age by not
displaying hyperlinks. One day I thought, why not use Acrobat to act as the report print
preview instead of the standard Visual FoxPro method?

Previously in this chapter we demonstrated a method to generate the PDF file without user
interaction. Now all we need is a method of displaying the document in the Acrobat Reader.
Not a problem, the following line of code works just fine on our PC:

RUNY n105; O
000 C: \ Progr aniFi | es\ Adobe\ Acr obat [5. O\ Acr obat \ Acr obat . exe" [, O
000 C: \ MyDocunent s\ Menber Li st 200008. PDF" O

So now we need a way to make the call generic. There are several solutions to this. We
can store the location in a configuration table or INI file. While this works it is just one more
thing that the users need to maintain and can possibly set up wrong, which potentially will lead
to another support call. So how can you determine the location of Acrobat? Fortunately,

Chapter 8: Integrating PDF Technology 15

Acrobat registers itself in the Windows registry and the executable is stored in several keys.
The key that seems appropriate for this exercise is:

[HKEY_CLASSES_ROOT\ Acr oExch. Docunent\ shel I\ pri nt\ conmand] O

The results will differ based on which version of Acrobat is installed, full product or just
the Reader and the OS platform you are using. It is important to note that you will need the full
product to generate the PDF files to start with unless you have a product like the Amyuni PDF
Converter. On our computers the registry entry consists of the following values:

Acrobat (full):
C:\Program Files\Adobe\Acrobat 5.0\Acrobat\Acrobat.exe

Acrobat Reader:
C:\Program Files\Adobe\Acrobat 5.0\Reader\AcroRd32.exe

So with this functionality we can now use a registry class to grab the location of the
executable. The example created (AltRptPreview.scx:: RptPreview() method) will use the
same technique as the Acrobat hands free example (including the wwPDF50 classes from Rick
Strahl). It uses the Registry class that comes as part of the Fox Foundation Classes (FFC) to
determine the location of Acrobat and executes the reader with the PDF file as the parameter.

| cRegFi | eFOHOME(2) +"cl asses\regi stry. prg"

| cAppKeyO=1"" 0O

| cAppNane='" 0O

| oPDFO00C=0OCREATEOBJECT (' wwPDF40') O

O

*OCheckf or [t heOexi st encellof [t helr egi stryCcl assO

| FONOTCFI LE(| cRegFi | e) O

OOMESSAGEBOX(" Regi st rylcl assOwasnot Of ound(" T+ cRegFi | e*') ") O
OORETURND

ENDI FO

O

*O nstancelt heRegi stryOobj ect O

| oRegIIOOO=ONEVOBJECT(" Fi | eReg", O cRegFi |) O

O

*[Get OAppl i cati onOpat hCandexecut abl e

I nEr r NunJC=0 oReg. Get AppPat h(" PDF", 0@ cAppKey, 0@ cAppNane) O

O

| FO nEr r Nuni)! =000

OOMVESSAGEBOX(" NoD nf or mat i onCavai | abl e or OAcr obat Cappl i cation. ") O
OORETURND

ENDI FO

O

*[Renovelsw t chesCherel(i. e., OC \ EXCEL\ EXCEL. EXE[Y e) O

| FOATC(". EXE", O cAppNane) C#C00

0O cAppNanmeD=UALLTRI M SUBSTR(| cAppNane, (1, DATC(". EXE", O cAppNane) (+(3)) O
O

001 FOASC(LEFT(| cAppNane, (1)) D=B4000&& check f or 1 ongf i | eChanmel nOquot es
0000 cAppNanme(=0OSUBSTR(| cAppNare, [(2) O

OCENDI FO

ENDI FOO

16 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

Now that you have the location of the Acrobat executable you can proceed with the
building of the file and shell out to Acrobat in “preview mode”.

*[Bui | dCt helXf i | eChanmelf or [t heOPDFO

| cFi | eNameO=[T" Cont act Li st" [+ cNow+[I'. pdf " O
| cQut put Fi | e=UADDBS(SYS(2023)) + cFi | eNanel
O

*Gener at e[t heOPDFLf i | ed

| oPDF. Print Report (" ContactListing",dcQutputFile)Od
O

* CRunCAcr obat Cor OAcr obat OReader [

RUNLY n10J; O

00008 cAppNare[D; O

0007 cQut put Fi | e

The RUN command does not wait for the Acrobat application to be shut down. This is
important in the fact that any code that follows the preview will execute. Therefore do not run
code to clean up the PDF file because they are open.

##NOTE ICON

It should be noted that repeated calls to run any version of Acrobat will open up
another PDF file in the one single instance of Acrobat. This has no effects on the
ability for the user to review any of the files. As with anything in the computing
world, the limits are memory, file handles, and other system resources.

Another way to do this is:

*Exanpl e(cal | : O

DOshel | OW TH' Cont act Li sti ng. PDF", [0; O
DD0000000000 €\ MyMDocunent s\, G O
0NOOO00000000 ™ opent O

O

*OPr ogr anilt OShel | . prgQd

* OOOW nApi [Oshel | Execut ed

*[JOFuncti on: OOpensCaldfi | el nlk heCappl i cati ond
*DOO0O0O00000 hat i t ' sCassoci atedwi t h. O

* J00000Pass: O cFi | eNane[F OONameCof Ot hef i | e[oCopenO
*0

* OO00ORet ur n: 02 OBadUAssoci ati on{i e, 0 nval i dOURL) O
* 0000000000810 ONoCappl i cat i onCassoci ati ond

* 0000000000290 CFai | ur el o oadCappl i cati onO

* 0000000000800 DAppl i cat i onl sChusydd

*0

* 0000000000 Val uesCover 0320 ndi cat edsuccessl

* 0000000000CandCr et ur nCan(nst ancelChandl e(f or O

* 0000000000 heOappl i cati onOst art edd(t heCbr owser) O
LPARAMETERSLCY cFi | eNane, [t cWor kDi r, [t cOper ati ond

O

LOCALO cFi | eNare, [O

000000 cworkDir, 0 O

000000 cOper ati ond

O

| FOEMPTY(t cFi | eNane) O

OORETURNCF 10

ENDI FO

Chapter 8: Integrating PDF Technology 17

O

| cFi | eNameO=UALLTRI M t cFi | eNane) O

| cwor kDi r OOC=0 I F(TYPE("tcWorkDi r*) ="' C, G O
OOO000OCO00000000000C00CALLTRI Mt cWorkDir) , " ") O

I cOperation=0 | F(TYPE("tcOperation")="C"'OAND; O
OOO00O0CO00000CO0ONOT OCEMPTY(t cOper ation), 0 O
OIDOOO000000000000CALLTRI M t cOper at i on), " Qpen”) O

O

*OShel | Execut e(hwnd, O pszQOp, U pszFi | e, O pszPar ans, ; O

* 0000000000000 pszDi r, DwShowCnd) O

*00

* OHVWWDChwnd 00000000 Chandl eDof Opar ent Cwi ndowd

* OLPCTSTRO pszOpUO} Caddr essDof Ost ri nglf or Doper ati on(t oCper f or nil
*OLPCTSTRO pszFi | e} Caddr essOof Ostri ngOf or Of i | enamed

* OLPTSTRO pszPar ans[}F Caddr essOof Ost ri ng(f or Dexecut abl e-fi | e(par amet er s
* OLPCTSTRO pszDi r OO} Caddr essOof Ost ri ngOf or Odef aul t Odi rect oryOd

* O NTOWShowCnd 00000 Dwhet her Of i | el sOshownOwhenCopenedd

DECLARE[NTEGEROShel | Execut e(D; O

OO0000001 NOSHELL32. DLLE; O

OO00000C0 NTEGERCNW nHandl e, ; O

OOO00000STRI NGeOper at i on, 5 OO0

OO0000OCSTRI NGCeFi | eNane, ; O

OO000000STRI NG cPar anet er s, 5 O

O00O0O000OO0STRI NGXeDirectory, ; O

OO000000 NTEGERON Showw ndowd

O

RETURNCShel | Execut e(0, | cOperati on, | cFi | enanme, OSPACE(0), O cWrkbDir, 1) O

So what are some of the advantages of this reporting alternative? In our opinion, it
addresses some of the Visual FoxPro Report Writer drawbacks. It mainly addresses the
weakness of the preview zoom (or as it is really known as, “lack of zoom”). The Acrobat
Reader provides super zoom capability (12.5% up to 1600%). Other nice to have features are
having multiple pages visible at one time with continuous mode, a search feature, and a true
What-You-See-Is-What-You-Get (WYSIWYG). You can also view multiple PDF reports
since the Acrobat Reader can open multiple PDF files.

Visual FoxPro developers have been challenged by the Visual FoxPro Report Designer
and have not been bashful about voicing these issues. Microsoft has repeatedly noted that there
will be little to nothing addressed with the existing Report Designer in future versions of
Visual FoxPro. Microsoft has also noted that we live in a component world. This is a beautiful
example of that component world reaping benefits for our clients. The example uses Rick
Strahls wwPDF class to avoid the user interaction when the PDF file is generated before it is
previewed in Acrobat. The code can be altered to use any one of the other PDF generators that
are available to developers.

How do | present Acrobat PDFs in a Visual FoxPro Form?
(Example: PdfDisplay5.scx, PdfDisplay5a.scx)

If you have Acrobat or the Acrobat Reader product you will also have the ActiveX control that
will display a PDF file in a Visual FoxPro form. There are two controls that appear in the
Tools |Options dialog on the Controls page. The control you want to work with is Acrobat
control for ActiveX. The other control, Adobe Acrobat document only allows you to hard code
the PDF file that is displayed.

18 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

We want to give you a word of caution before moving into development with this control.
We originally developed the samples with the control included in Acrobat 4.0. These samples
have worked flawlessly. In March of 2001 Acrobat 5.0 version was release. We have crashed
Visual FoxPro 6 and Visual FoxPro 7 a number of times with the newest version. The
examples presented have worked around the C5 errors. Adobe states specifically on their
website that this control was designed specifically to work with Microsoft’s Internet Explorer,
yet discusses its use with developer tools like Visual Basic. So tread carefully with the
examples and implementation in applications.

Like all ActiveX controls, first you will need to select the Acrobat Control for ActiveX in
the Controls tab of the Visual FoxPro Options dialog.

Regionsl | Debua | Edtr | FieldMapping | IDE |

Wi l General l Data l Remate Data l File Locations l Forms l Projects Controls

" Vizual class libranes
i+ fctiver contrals

Selected:

Show

[v |rzertable objects

O Appizards.Subtyizard W Conkrals
O Application D ata Contral B
O AwxBrowze dxBrovwser

[Bitmap Image

O Button DTC

O Ca Default RequestDenial Control =2
[0 CaDefaultDlg Clazs

[] COToolCHl Class ~|

Adobe Acrobat Contral far Actives

ak. | Cancel Help Set bz Default

#H#IMAGE: MF08005.tif
Figure 8.5 The Acrobat Control for ActiveX is available in the Controls tab of the
Visual FoxPro Options dialog.

Building the form is straightforward. Drop the control from the ActiveX palette on the
Visual FoxPro Form Controls toolbar to a Visual FoxPro form.

Chapter 8: Integrating PDF Technology 19

Form Controls

[T @ M O a

##IMAGE: MF08006.tif
Figure 8.6 The Acrobat Control is the middle toolbar button (with Acrobat symbol).

The property that needs to be set and/or bound to a Visual FoxPro control is SRC. This
tells the Acrobat control which PDF file to load and display. The SRC property can be set
dynamically which reloads the selected PDF file in the viewer (this worked fine in Acrobat 4
and causes OLE errors in Acrobat 5 unless set in the form Init method). The example form
(PdfDisplay5.scx, included in the downloads available from www.Hentzenwerke.com) takes a
parameter, which is the PDF file name and sets the SRC property of the PDF ActiveX control.

*[Pdf Di spl ay5. scxO nit()0O
LPARAVETERSLt cPdf Fi | eNarmeO
O

this.Resize()O

O

| FOVARTYPE(t cPdf Fi | eNarre) [C' DANDCFI LE(FULLPATH(t cPdf Fi | eNarre)) O
O hi s. ol ePDF. SRCCEOFULLPATH(t cPdf Fi | eNane) O

ELSEO

O hi s. ol ePDF. SRCCEOFULLPATH(t hi s. ol ePDF. SRC) O

ENDI FO

O

this. ol ePDF. set Focus() O

t hi s. ol ePDF. set Zoom(150) O

O

RETURNO

The sample form has a couple of things you should note before trying to run it. The first is
that you must have the ActiveX control registered on your PC. The second is that we have
hard coded the PDF filename in the SRC property. There is a good chance that your directory
structure does not match ours so some changes will need to be implemented before running the
form or you will need to pass in the parameter, which is the PDF file name (fully pathed or
available on the Visual FoxPro path). If the PDF is not available the form is displayed empty
since Acrobat cannot load the PDF.

The form is displayed (see Figure 8.7.) with the PDF visible. Do not be surprised by the
Acrobat splash screen. This is displayed when the Acrobat ActiveX control is instanced (the
same behavior is displayed when a PDF file is opened in Internet Explorer). All of the toolbars
that are included in the Acrobat Reader (or full version if this is what is loaded on the PC) are
available in your Visual FoxPro form including tools to zoom in and out, print the document,
search for text, change pages, and save it off to another file. Even items like Bookmarks and
Thumbnails are available in the ActiveX control.

20 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

i PDF Display in VFP Form

|d:M:Iata'\winw|:|rd\megafn)ﬂchapter%\cnntactlisting.pdf Frint
BS GGk dsE08ELE K | ra
@ ~® OQOOE |-
& ContactListing.fre Contacts System Pagel I |
7, w Developed as an examphe for chapter in -
7 £ MegaFox b
é_" E Hame
e 4 § Bednar, Steve Geeks and Gurus, Inc. sjbodnan@gesksandgunes.com ol
[Mohammed, Sam Geeks and Gurus, Inc. simohammedd geeksandgurus.com
‘E Sawyer, Steve Geeks and Gurus, Inc. sasawyerfgesksandgurus.com
ﬁ g Schummer, Rick Geeks and Gurus, Inc. raschumimerd@geeksandgurus.com
| &2
£
E 3
Y =T
@) =
=
e -
i
@] 4 4] 1of1 M 8Exitin | O = A 4] 3
I —

#HIMAGE: MF08007.tif

Figure 8.7 This is a PDF file displayed in a Visual FoxPro form. The Print command
button will display the printer selection dialog for the user.

There are a number of methods that can be called to change the behavior of the PDF
viewer. Unfortunately there is no documentation in the ActiveX control properties dialog that
describes the method parameters nor is there an associate help file. We can open up the
ActiveX control (PDF.OCX) or the control’s typelib file (PDF.TLB) to see what the
parameters are. Still, there is no specific documentation that we could find before assembling
this chapter. In Visual FoxPro 6 you need to use the Class Browser (see Figure 8.8), in Visual
FoxPro 7 you will need to use the new Object Browser (see Figure 8.9).

Chapter 8: Integrating PDF Technology

21

2+ acrobat.tlb (c:\program files\adobe\acrobat 5.0\acrobat\acrobat.tl... [Z)(5]&]

] E— = P T E R

M [c\program fileshadobehacrobat 5.

O B B B

]
E3

]

PDRotateFlags
__MIDL___MIDL_itf_acrobat_0000_0002
PDViewkode
__MIDL___MIDL_itf_acrobat_0000_0003
PDDocFlags
__MIDL___MIDL_itf_acrobat_0000_0004
PDSaveFlags

__ MIDL__ MIDL_itf_acrobat_0000_000%5
AWOpenParans

__ MIDL__ MIDL_itf_acrobat_0000_ 0006
CaAcrodpp

CacroPDDoc

|ProvideE SData

CacroédDoc

CaAcrodh/Fagetiem

CacroPDPage

CacraPDannot

CacroPoint

CacroRect

CacraTime

CacraPDTextSelect

CacroHiliteList

CacraPDEB ookmark

W

Typelib: c:Mprogram filesh adobetacrobat
5.0hacrobathacrobat b
Time Stamp: 12/18/00 02:33:20 P

=
]

#HIMAGE: MF08008.tif

Figure 8.8 The Acrobat Control for ActiveX exposes a number of methods for the

developer to interact with the control in the Visual FoxPro form. This is the exposed in
the Visual FoxPro 6 Class Browser.

22 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

¢::' Object Browser EEE

[v|¢-Back || %E@Find|@0ptiuns|@
|Classes & Members |Items containing ‘CopyToClipboard'
- Acrobat ~ B Classes
+-E Classes +- 28 Interfaces
+]- E Constants
+-@F Enums
+|- §F Events

+- 28 Interfaces

—1-=% Methods (121)
=@ AcquirePage
=@ AddAnnot
=@ AddNewAnnot
=@ BringToFront
=@ ClearFlags
=@ ClearSelection
-4 ClosepllDocs
=0
=@ Create
=@ CreatePageHilite
=@ CreateTextSelect
=4 CreateThumbs
=4 CreateWordHiite
=@ CropPages
=@ DeletePages v

ethod CopyToClipboard{boundR ect Az Ohject. n0rigin Az Mumerc, n' Origin Az
Mumeric, nfoom As Mumeric) As Mumeric

Member of Acrobat

Copies a PDF image to the clipboard

| Ready.

#HIMAGE: MF08009.tif
Figure 8.9 To view the property, events and methods in Visual FoxPro 7 you need to
use the Object Browser.

All of the features you use in Acrobat Reader via the menus and toolbars are exposed in
the Acrobat ActiveX Control. There may be methods that might be handy to execute via your
own exposed interface. A number of the Reader features are exposed through an interface of
properties and methods. Note the method names usually start out with a lower case name
(visible in the Object Browser and the Acrobat Javascript documentation). This is due to the
standard that Javascript uses, which is the native “macro” language included in Acrobat.

The printWithDialog() is nice because it automatically displays the printer selection and
print driver option dialog that Acrobat displays when you select the File | Print menu option.
You can also print directly to the Windows’ default printer with the Print() method. There are
a number of print methods to suit most tastes. The gotoLastPage() method could be used in the
cases when the customer likes to view the grand total information on the report which is on the
last page, before reviewing the details. If your users prefer to see the report zoomed at a
specific percentage you can use the setZoom() method.

There is a second method to displaying PDFs in a Visual FoxPro form. If you have the full
Acrobat product you will also have the ActiveX interface that will display a PDF file in a VFP
form. This interface is not loaded with the Reader edition of Acrobat. However this object is
well documented, both in the type library and in the Acrobat Software Developers Kit (SDK).

##WEB ICON

Chapter 8: Integrating PDF Technology 23

The Acrobat Software Developers Kit can be downloaded from the Adobe
developer page located at
http://partners.adobe.com/asn/developer/acrosdk/acrobat.htmi.

The easiest way to work with this technique is to use the new VFP 7 Object Browser.
Open up the Acrobat 5.0 Type Library object (see Figure 8.10). The main object is located
under Interfaces. It is called CAcroAVDoc. This interface has the capability to get at the other
needed interfaces as well as display the PDF. This object is created in the Inif of the form.

*OFormd nit() O

LPARAVETERSt ¢ PDFO

O

| FODODEFAULT(t cPDF) O

O hi s. oAVDoc [(FOCREATEOBJECT(" Acr oExch. AvDoc") O
0t hi s. Navi gat e(t cPDF) O

ENDI FO

RETURNO

¢: Object Browser

) v|¢lBack || ?@Find|@0pt\ons|@
|Classes & Members |Memhers of 'CAcroAVDoc!
=W Acrobat (cached) #| | =% Methods ~
+-F Classes =@ BringToFront
+-E Constants =@ ClearSelection
+-@F Enums =@ Close
+-fF Events =@ FindText
-8 Interfaces (13) =@ GetAVPageView
= CACToApp =@ GetFrame
=0 CAcroAVDoc =@ GetPDDoc
3 CACToAVPageView =@ GetTitle
4 CAcroHiliteList =@ GetViewMode
0 CACroPDANNOt =@ Isvalid
0 CAcroPDBookmark =@ Maximize
3 CAcroPDDoc =@ Open
3 CAcroPDPage =@ OpenInWindow
o0 CACroPDTextSelect =
o CAcroPoint =@ PrintPages
03 CAcroRect =@ PrintPagesEx
=@ PrintPagesSilent
3 - =@ PrintPagesSilentEx v
Method DpenlnWindowE x(szFullPath 45 Sting, hwnd A3 Numeric, openFlgs 43 Numeric,
UselpenParams Az Humeric, pgMum A3 Numeric, pageMode £z Humeric. ZoomType Az
Mumeric, Zoom Az Mumeric, Top Az Mumeric, Left Az Mumeric) Az Mumeric
tember of Acrobat [cached]. CAcroAYDoc
Dpens a PDF file and displays it in a user-specified window.
| Ready.

##IMAGE: MF08014.tif
Figure 8.10 The Acrobat 5.0 Type Library object has documented interfaces, method,
and constants.

The form will optionally accept a PDF file name as a parameter. If the Acrobat object
cannot be instantiated the Error method will trap the condition and disable the user interface

http://partners.adobe.com/asn/developer/acrosdk/acrobat.html

24 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

objects on the form. After the object is created the custom Navigate method is called to open
up and display the PDF file. To open the PDF file and display it in the form we use the new

Visual FoxPro Hwnd property as a parameter to the OpenlnWindowEx method. This allows
Acrobat to display itself in a Visual FoxPro form.

* OFor niNavi gate() O

LPARAMETERSt c PDFJ

O

*OConst ant sCext r act edf r onJAcr obat (5. 0OTypelLi br ar y[vi al0Obj ect OBr owser O

O

#DEFI NECAVZoonmNoVar y DO00000000000 DOO000&&OFi xedval uelzoom O

#DEFI NECAVZoontFi t Page 0OOOOOOOOOM OOOOOC&&OFi t Cpagelt oOwi ndow. O

#DEFI NECAVZoonti t W dt h 0000000002 OO000C&&OFi t CpageOwi dt hOt oOwi ndow. O

#DEFI NECAVZoonti t Hei ght OOOOOOOOMB8O00000C&&CFi t Cpagelhei ght Ot oOwi ndow. O

#DEFI NECAVZoontFi t Vi si bl eW dt hOOD4 000000&&OFi t Dvi si bl eOwi dt h(t oOwW ndow. O

#DEFI NECAVZoonPr ef er r ed D000O00005 OO0O00C&&Us e Cpage' sCpr ef erredizoom O

#DEFI NECpdRot at e 0 I0J0000000000000 DOO0C&&Rot at ed0degr ees. O

#DEFI NECpdRot at e90 0000000000000 00000C&&Rot at ed[900degr ees. O

#DEFI NECpdRot at €180 0000000000180 0000IC&&Rot at ed11800degr ees. O

#DEFI NECpdRot at e27000000000C0C0M®R 7000000C&&Rot at ed[(2700degr ees. O

#DEFI NEOPDDont Car e ID0000000000000 OO00C&&Leavet helvi ewnodelasOi t O s. O
#DEFI NECPDUs eNone COCOOOOOOOO0O0O™M OOOOOC&&D spl ay [t heCOdocument Owi t hout O
booknmar ksCor [t hunbnai | s. O

#DEFI NECPDUs e Thurbs COOOOOOOOO0OM™® OOOOOC&&D spl ay [t heOdocunent CandCt hurbnai | O
i mges. O

#DEFI NECPDUs eBook mar ks 00000000003 OOO00C&&D spl ay [t heCdocurent DandChookmar ks. [
#DEFI NEOPDFul | Scr een 1000000000004 DOO000C&&D spl ay [t heOdocunent O nCf ul | OscreenO
node. O

#DEFI NEOPDDoc Needs Sav e ID0O00000M 0O000OC&&ODocunent ChasObeenOnodi f i edCandOneedsd
toObelsaved. O

#DEFI NEOPDDocRequi r esFul | Save O 000000&&ODocunent Ocannot CheOsavedd
incremental |y; 0t Ohust CbeDwr i tt enCusi ngdPDSaveFul | . O

#DEFI NEOPDDocl| sModi f i ed 0000000004 0O000O0C&&ODocunent ChasbeenOnodi fi ed. O

#DEFI NECPDDocDel et eOnCl ose 000008 DOOO0C&&Docunent [sCbhasedDonCalt enporaryl
file. O

#DEFI NECPDDocWas Repai r ed 0OOCCOM 6 0OOOCC&&Docurent Cwas Cr epai r edCwhen(t Cwas O
opened. O

#DEFI NECPDDocNewMaj or Ver si onO00032 00000C&&Docunent ' sOraj or Cver si on sChewer O
thanCcurrent. O

#DEFI NECPDDocNewM nor Ver si on00064 00000C&&Docunent ' sOri nor Cver si on sChewer O
thanCcurrent. O

#DEFI NECPDDoc A dVer si on000000M 28 00000C&&Docunent ' sCver si on sCol der [t hanO
current.

#DEFI NECPDDoc Suppr essEr r or s 00256 00000C&&Don' t Odi spl aylerrors. O

#DEFI NECPDDoc| sEmbedded 000000512 00000C&&MDocunent O sCenbedded [nCalconpoundO
docunent . O

#DEFI NECPDDocl sLi near i zed OO0 024 00000C&&MDocunent 0 s i neari zed(get Conl y) . O
#DEFI NEOPDDocl sOpt i mi zed IOOOM2048 00000C&&Docunent O sCopt i mi zed. O

#DEFI NECPDSavel ncr erent al 00000000 O00000C&&OW i t eCchangesConl y. O

#DEFI NEOPDSaveFul | DOO0000000000M OO0O000C&&OW i t et helentirelfile. O

#DEFI NEOPDSav e Copy DOOOOOO000O00™2 OOO000&&IOW i t eCallcopy Cof [t helf i | el nt o[t heO
file. O

#DEFI NEOPDSavelLi near i zed 00000004 000OOC&&OSave lt helf i | el nCall i neari zedO
fashion. O

#DEFI NECPDSaveW t hPSHeader 0OOOOC8OO00OC&&OW i t esCalPost Scri pt Cheader CasOpar t Cof O
thesavedfile.O

#DEFI NEOPDSaveBi nar y OKOOOOOOOOM 6 0OOOOC&&OSpeci fi esCt hat G t ' sOOKCt olst or el nO
binaryOfile. O

Chapter 8: Integrating PDF Technology 25

#DEFI NECPDSaveCol | ect Gar bage 132 IOOO0C&&Remove unr ef er encedlobj ect s, of t enO
reduci ngfil esi ze. O

#DEFI NECAV_EXTERNAL _VI EWDOOOO0OM OO000OC&&O0pen [t helOdocunent Owi t hCt helt ool [har O
visible. O

#DEFI NECAV_DCC_VI EWDOOOOOOOO00R OO000OC&&Dr awlt heOpagelpanelandOscrol | bars. O
#DEFI NECAV_PAGE VI EWIDDODOOOO0004 OO0000&&Dr awonl y Ot heOpageOpane. O

O

| FOVARTYPE(t cPDF) O=I'C' O

00N FOFI LE(t cPDF) O

OOOOW THCX hi s. oAVDoc O

00000 Ot sOionpor t ant [t olcl oseleachldoc, Oeveryti me. Ol f Oyouldon' t, OwhenOyoud
00000 O ryOvi ewi ngt heOsaneOpage, O t Dwon' t Odi spl ayOanyt hi ngd- Oyouthavelt olki | 1 O
00000 O helobj ect Or ef er encesCandCcl oseVFP, Cpl usCki | | CAdobe. Ol t Orai nt ai nsCalO
00000 Ocol | ect i onCof DopenOdocunent s, Cbut OweCar eConl yOusi ngOonelOdocunent Cat CalOd
00000 CandCt heOzer oOnmakes Osur et heOdocunent 0 sOnot Osaved. O t (keepsCt hi ngsO

si npl e, OO

00000 CandCt olkeept helmrenor yOusaget oCalm ni mum 0O

000000, A ose(0) O

O

000000, Openl nW ndowEx (t cPDF, [t hi s. Hwnd, DAV_EXTERNAL_VI EW [, O
O000O00000000000000000. T., 00, OPDUseNone, DAVZoonPr ef erred, O, O
OOOOOOOCOO000000000000 000, 030, 0) O

O

00000 hi s. oAVPaged=0. Get AVPageVi ew() O

O

00000 OSet Ot heDzoontopt i onsO

00000 hi s. Resi zeAcrobat () O

O

000000 FO I SNULL(t hi s. oAVPage) O

00000003 OTur nOon, Opr eset [t helzoontlcont r ol DonCt hef or m OThenzoonit ot hed
0000000 Ceor rect OPDFCsi ze. O

0000000 hi s. oAVPage. Zooniro(0, (1100) O

0000000 hi s. oAvPDDoc (=00 Get PDDoc () O

OOOOOCEND! FO

O

00000 hi s. cOpenPDFC=C hi s. For mat Fi | eNane(t cPDF) O

00000 his. Refresh() O

OOOCOENDW THO

OCELSED

OOOOMESSAGEBOX(" PDFOFI | e[sel ect edddoesnot Cexi st™, [0 O

I0OO000000000000 [+ 064, [hi s. Caption) O

OCENDI FO

ENDI FO

O

RETURNC

We decided to include all the #DEFINES so you can see the various options available. The
Navigate method first closes an existing PDF if one is open, then opens up the selected PDF
and displays it. The Navigate method also instantiates two more Acrobat objects. The first is
based on the CAcroAVPageView interface. There are a number of methods available on this
object to manipulate to a specific location in the document and determine what the user will
see. Methods include ScrollTo (to scroll to a specific location on a page), ZoomTo (to zoom
the document to a certain percentage), DoGoBack (to return to the previous position in the
view history stack), and DoGoForward (to return to the next view in the history stack). The
second is based on the CAcroPDDoc interface. This object provides methods GetNumPages
(to find out the number of pages, handy when printing the documents or ranges of pages),

26 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

GetFileName (to know what PDF is open), DeletePages/CreateThumbs/DeleteThumbs (if you
want to manipulate the contents of the documents), and Save (does what you would expect).
We did not implement all of these methods, we thought that it would take all the fun away
from you and left that as an exercise for you to become familiar with the different objects.
The sample form will open up without showing a PDF if you do not pass the file as a
parameter. The user can then use the ellipses button (three dots) to select a PDF. This button
uses the GETFI LE function to obtain the PDF name then calls the Navigate method. The user
can resize it and have the PDF viewer resize itself as well. The only real drawback of this
technique is that it is only available to users that have the full version of Acrobat installed.

What is Acrobat Forms Author technology? (Exampie:
SHAppBuildPermitData.pdf)

Acrobat ships with a cool feature called Acrobat Forms Author Technology that is provided
via a plug-in (add-on or extension to the base product). This technology allows end users to
convert paper forms into electronic forms that have the exact look of the original paper forms.
These forms can be displayed in Acrobat and the end users can enter data in the same exact
format they used when filling out the paper directly. This form might be a company standard,
an industry directive, or a governmental dictate.

If your users are as demanding as ours, you have probably run into the situation where
you have been asked to produce an interface form that duplicates the existing paper version.
You go off to develop this slick interface and demo the prototype to the users. The first thing
they mention is that it does not mimic the paper version of the form “exactly”. The flip side is
printing reports that mimic the paper version. While this is usually easier than the data entry
part of the equation, generating reports with various lines and boxes, detail lines that exceed
the facilities of the Visual FoxPro Report Designer or even some of the third party report
writers can be a challenge. Once and awhile it is impossible. Acrobat Forms can assist us in
getting data via data entry and outputting data to the forms for printing.

Chapter 8: Integrating PDF Technology 27

Adobe Acrobat - [SHAppBuildPermitData. pdf] EEE
@ File Edit Document Tools View Window Help - 8 X
2 Oy K3
ERERESEE-BE-E 4P |[E| 20 - O0OEE - MK
) i
E B
Ll B BUILDING PERIMIT SEea ; A SPR#
E APPLICATION STERLING HEMHITS
_11 m
[%JI 7/ - AuUbbh ULE HOad, P BOX BUUY
- Sterling Heights, Michigan 48311-8009 -
g m Phane (810) 446-2360--Fax (810) 276-4061 m |
g INSPECTION LINE (310) 4462377
‘?‘ - 1. JOB LOCATION
Z 2 T 6876 Main Street [1242872001
ﬁsc‘ 7— On sta ocation [Subdvision, Lot Bullding Ele) [}gwntgwn Sterhnq He|qhts
Yo il ET M
& § ST Geeks and Gurus, Inc. [™ (586) 940-0081
E 7T 49424 Front Street “' Sterling Heights |sm° M1 |1P4§cf;4
(=]
ve Bodnar, Steve Sawyer, or Rid ummer 13) 418-
= - SR Srave Bodnar, Steve Sa Rick Sch TR (313) 418-1290
% @ 2. DESCRIPTION OF WORK | Describa work by circling which of the following apply |
E TrE G e O R e T e
i e T o B e S o G oy TR o EENE M o
ﬁ c%" RESIDENTIAL [T [wockncn e [Jhamuamn [Trsarammncn s
= P SR ST o A B
L enumen [rersscssian e unure O o
T [[wommas rssnmuncn D.\HII'-" _________________
= ™ New Geeks and Gurus northern Detroit office <
4] 4] 1of2 P M BSxtiin O | & # 4|
##IMAGE MF08010.tif

Figure 8.11 This form is the city of Sterling Heights Building Permit form with some
data filled in as the user would see it in Acrobat.

The Forms Author plug-in capability is included with the full version of Acrobat. The data
entry mode is available in the Reader version as well as full Acrobat, and a new product called
Acrobat Approval. So what are the advantages? For one, the forms can be replicated
electronically just like they are on paper. Since Acrobat printing is truly What-Y ou-See-Is-
What-You-Get (WYSIWYG) the forms can be printed after being filled in. They can be saved
with the data entered, which provides an audit trail. Most importantly, the information can be
extracted and saved in a database for further analysis.

Visual FoxPro developers might be asking the question, why would I need Acrobat forms
when I have a great forms designer in Visual FoxPro? The difference is that Acrobat Forms
can also be implemented in a distributed environment via the Internet without the overhead of
the ActiveDoc technology used in Visual FoxPro. This means that the PDF file can be
accessed on the web, users can enter in data, and the information can be submitted to the web
server for processing and the data extracted and stored into a database.

There are a couple of concepts in developing these forms that are very familiar to Visual
FoxPro developers. The Acrobat Forms “designer” has similar functionality as the Visual
FoxPro form designer. You change the mode of Acrobat with the PDF from “entry” to
“designer” via the Form Tool icon on the left-side toolbar icon (second from the bottom on the
left side toolbar in Figure 8.12). This toggles the mode so the form editor is available. Right-

28 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

click on any object will bring up the shortcut menu. One of the many menu options is
Properties. Selecting this option will introduce the Acrobat form field property sheet (see
Figure 8.13 for one page in this dialog). There are properties to name the objects, comment
their use, adjust fonts, format the entry, set colors, require data, make it read only, have default
values, set the tab order, and align the text. There are settings to run code for events and
perform validation. Sound familiar? Sounds like what we do with the Visual FoxPro Class and
Form Designers on a regular basis. Object types include Text (TextBox), CheckBox,
ComboBox, ListBox, RadioButton (OptionGroup), Button (CommandButton) and Signature
(no Visual FoxPro equivalent).

The property dialog is very comfortable to Visual FoxPro developers. The biggest
difference is that the code is written in JavaScript. Dropping objects on the PDF form is
completed by changing the PDF into “designer mode” as noted earlier, and clicking and
dragging to size the new object. This will open the field properties dialog. You select the
object type and start setting the various properties. Each subsequent time you drag on another
object it will default to the same object type as the previous one added.

Adobe Acrobat - [SHAppBuildPermitData. pdf]

EFiIe Edit Document Tools View Window Help = [
2 K
EEEASEE- BE-E 4P| 20 - O0O0@FE - A
& 2
-
&l, BUILDING PERMIT - e T SPR =
ARRTICAN E’! STERLING HEMGHTS
T : BUILDING SERVICES
T Jubbh UNCA HOAT, P, B BU0Y
& Sterling Heights, Michigan 48311-8009 Print

Phane (B10) 446-2360--Fax (810} 276-4061 1
INSPECTION LINE {810) 446-2377

Data OF inston
bctStreetfddress i m—ﬁ. ppD :atE

1.J0B LOCATION

R Wl

[Signatures\{ Comments \{ Thumbnails\ Bookmarks

=]
=
2

'
H Cortact person I
%] 2. DESCRIPTION OF WORK | Describe work by circling which of the following apply |
i P B B B B B P
i B oewion B ooe B ose Bless [s
RESIDENTIAL | c BT | c e | c [
T
Lévh HON-RES DENTAIL = B
S | o G B wracssmnm Bl e
T | o et

Bl B vowesenmmn

OTHER | onOfWorkOther

] M 4] 10f2 P M BSx11in O = i

##IMAGE MFO08011.tif
Figure 8.12 This is the same form, but now seen in “designer mode”.

Implementation of a PDF with Forms is identical to a regular PDF file. These files can be
opened, data entered, forms printed with the Reader version of Acrobat. The PDF can also be

Chapter 8: Integrating PDF Technology 29

saved with the data included using the full version of Acrobat. The Amyuni product does not
have any functionality concerning Acrobat Forms.

Type: |Test

Shaort D escription; |

Appearance l Dptions] .-’-‘«ctions] Format] Validate] Calculate]

Barder
[BorderColr W] widh |Thin ~|
[Background ED|D[J Style: |So|ic| j
Text

Text Colar: ﬂ

Font: |Tahoma j Size: |.~'-‘«uto j

Common Properties

[Read Only Formn Field |s: |Visible ﬂ
[~ Required Origntation: |0+ | Degrees

Ok, | Cancel |

#HHIMAGE MF08012.tif
Figure 8.13 This is the Appearance page on the Acrobat Form Object Property Sheet
for a Text object.

To this point we have not discussed the interaction with Visual FoxPro. The data captured
in an Acrobat Form is exported via the File | Export | Form Data... menu option. This option is
only available with the Business Tools or full Acrobat editions in version 4 of Acrobat.
Version 5 requires the Approval or full Acrobat version. The export process creates a FDF file.
This file is a flat text file that includes tags and data. Here is the information in the FDF file as
it was exported from the SHBuildPermitData.pdf (included with downloads):

%-DF- 1. 20

v@al o0

1000obj O

<<[d

| FDFk< Fi el ds (k< VIO O f I/ TEX chkNonResi dent i al Theat er) >>[k<d VOO O f J TO
(chkResi denti al Chur ch) >>0

<OV O f I T chkResi denti al GasSt ati on) >>[k<[y VO O fJ TO

(chkResi denti al Hospi tal) >>00

<OV O f 0 T chkResi dent i al Hot el Mot el) >>[k<[¥ VU Yes TO

(chkResi denti al | ndustrial) >>00

<<V O fJ T chkResi denti al O fice) >>[k<J VIU O f [T chkResi denti al Ot her) >>[0
<OV O f 0 TO(chkResi dent i al Par ki ngSt ructure) >>k<d VOO O f I/ TO

(chkResi denti al Pl anNunber OnFi | e) >>0

<O VO O fO T chkResi denti al PublicUtility)>>k<d VO OfOTO

(chkResi denti al School) >>0

30 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

<OV O f 0 T(chkResi dent i al Si ngl e) >>[k<dJ VU O f J TO(chkResi dent i al St ore) >>0
<OV O f 0 T(chkResi dent i al TwoOr Mor e) >>[k<[J/ VU O f [0 TO(chkTypeAddi ti on) >>0
<OV Of T chkTypeAl teration) >>[k<[J VID O f [TO(chkTypeConcr et e) >>[]
<OV O f I T chkTypeDeck) >>k<0J VIO O f J TO(chkTypeDenol i ti on) >>[0

<< VO O f O TO(chkTypeFi r eRepai r) >>k<J VI O f 0/ TO(chkTypeGar age) >>000

<OV O f 0 T(chkt ypeMbi | eHome) >>k<[J VIO Yes TO(chkTypeNewBui | di ng) >>00
<OV Of I T chkTypePool) >>[k<J VIV O f [/ TO(chkTypeRel ocat e) >>[

<OV O fI T chkTypeRepai r) >>[k<d VIO O f I TO(chkTypeRoof i ng) >>0

<<V O f 0 TO(chkTypeShed) >>[<[V VX 11/ 15/ 2001) / TX t xt AppDat e) >>[1

<< VI 12/ 31/ 2099)/ TJ t xt Cont act or HoneExpi r at i onDat e) >>k<[J V[J(38- 9999999) / TO
(t xt Cont act or HoneFed| d) >>0

<<[J VI 987654321) / T t xt Cont act or HoneLi censeNunber) >>[k<J VI VFPOSpeci al i sts)/ TO
(txt Cont act or HoneLi censeType) >>1

<< VI SterlingOHei ghts)/ TO(t xt Cont act or HoneOaner Ci ty) >>[k<[J VJ(48313)/ TO

(t xt Cont act or HonePost al Code) >>

<< VA M)/ T t xt Cont act or HoneSt at e) >>[k< VI 5865551234) / TO

(t xt Cont act or HomeTel ephoneNunber) >>0

<< VI Weasel OandOshi f t yOl nsurancelG oup, O nc.)/ TO

(t xt Cont act or HoneWor ker Conpl ns) >>0

<< VIX St eve[Bodnar, OSt eveSawyer, Cor ORi ckOSchumer)/ TJ(t xt Cont act Per son) >>0
<<[J/ V[3134181290) / TIX t xt Cont act PhoneNunber) >>[k<[J V[Acnel0Const ruction)/ TO
(txt Cont ract or HomeOaner) >>0

<<[J VII(9999(El ms ISt r eet) / T t xt Cont r act or HoneOwner Addr ess) >>[k<[J VI New1Geeks[
andOGur usthort her ODet roi t Cof fi ce)/ TO(t xt Descri pti onOf Wor KOt her) >>[00

<<[¥ V[D3726312873621878) / TC{(t xt Dri ver Li cense) >>[k<[V V[999999999999) / TO

(t xt MESC) >>0

<<[¥ VI 5869400081) / TCY t xt Oaner PhoneNunber) >>[k<[V VI 424240Front OStreet) / TO
(t xt Oawner sAddr ess) >>0

<<[J VX SterlingOHei ghts)/ T(txt OmersC ty)>>[k<[J VI GeeksOandOGur us, Ol nc.)/ TO
(t xt Owner sNane) >>0

<<[J VI 48314)/ TOJ(t xt Owner sPost al code) >>[k<J/ VI M) / T t xt Oaner sSt at e) >>[1
<< VX Downt ownSt er | i ngOHei ght s) / TO(t xt Si t eLocat i on) >>k</ V(9876 0vai nO
Street)/ Tt xt Street Addr ess) >>[

100

/ FOX SHAppBui | dPer i t Dat a. pdf)/ | DO O

<8c562df f 8dbc2284ab14a9e4b572b02f ><98995e30af ea0090038a1c9c79587eld>0

1 B>>00

>>[0]

endobj O

trailerO

<<[]

/ Root D1 000ROO

O

>>[]

WECFD

At this point we can see that the data entered can be output to a flat file. This file can be
parsed using Visual FoxPro’s Low-Level File Input and Output commands and added to tables
which are much easier for us to process. It would require that some fundamentally mundane
code be written to separate the information from the tags and to get this information into a
table. While most of us would not mind writing this code, wouldn’t it be cool if there was a
better mechanism to extract the data from the FDF format? There is and it is called the FDF
Toolkit, from Adobe.

How can | extract data out of a PDF form file? (exampre:
FDFRead.prg)

Chapter 8: Integrating PDF Technology 3

So now that we understand Acrobat PDF files can be built as a data entry mechanism and
provide printing capability, the question begs, how do we extract this data from an Acrobat
form and have it interact with our custom database applications? Adobe has provided a
product called the FDF Toolkit on their website
(http://partners.adobe.com/asn/developer/acrosdk/forms.html). This is a free product with a
version for Acrobat 4 and 5 (our experience is that the version for 4 works with Acrobat 5, it
just has fewer features). The download includes Application Programming Interfaces (API) for
C/C++, Java, Perl, and ActiveX, and some extensive documentation on how it can be used
with these tools. Visual FoxPro developers will find the Win32 ActiveX interface of the FDF
Toolkit easy to use and very compatible (despite the lack of Visual FoxPro examples in the
documentation). The ActiveX portion of the toolkit is made up of two files: FdfAcX.dll and
FdfTk.dll. The toolkit will install the toolkit files, but does not register the components.

The examples to read and write a FDF file will seem very familiar if you have worked
with any Automation to Microsoft Word and the Visual FoxPro Low Level File Input/Ouput
commands (LLFIO). The example code can be found in the FDFRead.prg and the
FDFWrite.prg samples which can be downloaded from Hentzenwerke.

Register the FDF Toolkit ActiveX control

The ActiveX control (FdfAcX.dll and corresponding FdfTk.dll) should reside in the
Windows/System32 directory or another directory that has “execute” permission. The process
to register the FDF Toolkit ActiveX control is as simple as the following command (add a path
to the DLL if necessary):

RegSvr 320Fdf AcX. dl | O

The control is self-registering. The Visual FoxPro 6 Setup Wizard and Visual FoxPro 7
InstallShield Express products will automatically register this control as part of the installation
process so the deployment process is easy. Please note that there is no reason to register the
FdfTk.dll and that it will fail if you try to do so.

Instantiating the object to access the FDF File
The instantiation of the FDF ActiveX interface is accomplished via a standard process of
using the Visual FoxPro CREATEOBJECT() function. Here is an example of the needed code:

| oFDFO=0CREATEOBJECT(" f df App. Fdf App") O

This returns an object reference to the FDF control so that the methods can be run to read
and write data from the FDF file. Now that we have the important object reference to the FDF
control we can start to manipulate the data inside of it via the interface methods that are
exposed.

The first step in reading the information is to open the FDF file. This is accomplished by
running the FDFOpenFromFile() method.

| oFDFFi | e(=00 oFDF. FDFOQpenFr onfFi | e(" SHAppBui | dPermi t Data. fdf ") O

32 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

This method returns an object reference to the FDF file. If the file does not exist or could
not be opened, an OLE Exception is thrown. You will need to handle this issue in your error-
handling scheme. Once the object reference is gained you can go after specific fields in the
FDF. To take this approach you need to provide the field name as a parameter to the
FDFGetValue() method. One important item to note is the field names in the FDF and access
to these fields is case sensitive. The passing of "txtstreetaddress" is not the same as
"txtStreetAddress". So, to access a specific field you can use code like:

| cFDFFi el dOOO="t xt St r eet Addr ess"
| uFi el dVal ueJ=[1 oFDFFi | e. FDFGet Val ue(| cFDFFi el d) O

You can also use the FDFNextFieldName() method to loop through the fields. To get the
first field in the file you pass a null string (SPACE(0)) as the parameter to the
FDFNextFieldName() method. To get the next field in the FDF file you pass the current field.
Here is some code that loops through all the fields in the FDF file:

| FOVARTYPE(| oFDFFi |) =[1'O' 0

O OGet (t heF i rst Of i el dCnameld nCt heOFDFCF i | eD

00 cFDFFi el dOJJO =0 oFDFFi | e. FDFNext Fi el dName("") O

00 nFi el dCount er (=100

O

OOCLEARO

O

O OLoopt hr oughk heOFDFCY i | el oCget [t helval uesO
OODOCMHI LECNOTCEMPTY(| cFDFFi el d) O

0000 uFi el dval ueOC=00 oFDFFi | e. FDFGet Val ue(| cFDFFi el d) O
O

0002 0st r (I nFi el dCount er, (6), O cFDFFi el d, [0; O

0OOoocr (1, Ovart ype(| uFi el dval ue), O') O==", O uFi el dVval uel
O

000 cFDFFi el dO=00 oFDFFi | e. FDFNext Fi el dNane (| cFDFFi el d) O
0000 nFi el dCount er C=0 nFi el dCount er CH10

OOJENDDO

ENDI FO

O

| oFDFFi | e. FDFO ose() O

The data in the FDF file is strictly character based. If you are moving this data into a table
you will likely need to transform the data into the proper data type for the field unless the
record is all character fields.

There are hundreds of thousands of paper based forms already pre-built, and a large
percentage of these are already scanned and available on the Internet in PDF format. The
examples used in this chapter were directly downloaded from the Sterling Heights city
website. Many of the governmental and private business entities already have the forms set up
in PDF format, and some are already set up with the form fields included. All the object fields
were added in the example PDFs in less than 45 minutes. We did not add any JavaScript for
serious validation or enforce any business rules in the examples, but it can be done with a little
more effort. Leveraging existing PDF forms will save you time, your clients’ money, and can
make you look like the hero.

These forms can be used in a traditional LAN/Workstation based application as well as
the Client/Server arena. The users open up Acrobat Reader and fill in the data in the form and

Chapter 8: Integrating PDF Technology 33

use the menu to save the data to a predefined directory. Each user will need a full license to
Acrobat (unless the new and less expensive Acrobat Approval meets your requirements). They
will use the menu since the product does not support the JavaScript code necessary to export
the data. In a website configuration the users open up the PDF in the browser and fill in the
data. The Reader version (as well as the full version of Acrobat) can submit form data back to
the webserver with Javascript. We included a Submit button in the SHAppBuildPermit.pdf
example to show the simple JavaScript code needed to submit the data back to the webserver.
The data submitted from an Acrobat form is sent to the webserver in the same exact format as
the data submitted from an HTML form. This information can be processed by a Common
Gateway Interface (CGI) process. We have used WebConnect (from West Winds) to be the
CGI process that accepts data from a PDF on the web. The great thing about WebConnect in
this situation is that it is extremely fast, and it allows Visual FoxPro developers to leverage
their Visual FoxPro skills to provide a powerful solution.

How do | prefill the PDF Form with data? (example: FoFwrite.prg)
Reading the file might be enough excitement for some of our clients, but what if they could
also prefill a PDF Form with data from their Visual FoxPro application? The FDF Toolkit
control also provides a plethora of methods to write out data into the FDF format. Once the
object reference to the FDF ActiveX control is obtained, you execute the FDFCreate() method.
This creates the FDF in memory and returns an object reference to this “file”. After the file is
create, the field name tag (/F) and value tag (/V) are written for each of the fields you want
written via the FDFSetValue() method. The example below writes out two fields.

| oFDFFi | e000000 oFDF. FDFCreat e() O

O

*OFi |1 O nOt wolK i el dsO nCt heOFDFO

| cFDFFi el dO0O0OOOC="t xt St r eet Addr ess" 0

| cFDFFi el dVal ue=1" 10020vegaFoxDeno St r eet " O

| uFi el dval ueJ00=00 oFDFFi | e. FDFSet Val ue(| cFDFFi el d, 00 cFDFFi el dval ue, 0. F.) O
O

| cFDFFi el dO0O0OOOC="t xt Oaner sNane" O

| cFDFFi el dVal ue=" Ent er Oyour (Nane[Her e" O

| uFi el dval ueJ00=00 oFDFFi | e. FDFSet Val ue(| cFDFFi el d, 00 cFDFFi el dval ue, 0. F.) O

Naturally the code you will write will include more than a couple of fields. You also need
to transform data from the native format to character before storing it in the FDF file. The final
method called before closing the file is the FDFSetFile(). This writes out the /F tag, which
associates the FDF file with the PDF file the data will be prefilled and display in. When the
FDF file is opened it will preload the associated PDF file, and then fill in the fields loaded in
the FDF.

* JSet [t heOnaneUof [t he[OPDFCassoci at edCwi t h(t he OFDFO
| oFDFFi | e. FDFSet Fi | e(" SHAppBui | dPer mi t For m pdf ") O

The FDFSaveToFile() physically writes out the FDF data to a file. The file is closed via
the FDFClose() method and the object reference should be released.

*[Witelout Ot helXfil ed

34 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

| oOFDFFi | e. FDFSaveToFi | e(" Chapt er 08Sanpl e. fdf ") O
| oFDFFi | e. FDFCl ose() O

There are a number of other methods in the FDF ActiveX that provide behaviors you may
find useful. There are capabilities to write FDF files to a string, additional tags can be inserted
into the file, you can add custom JavaScript, etc.

There are two real life examples using the FDF Toolkit to prefill data in a PDF form that
we would like to discuss. The first is to use it as a substitution of the Visual FoxPro Report
Designer. Customers are always demanding reports that replicate the paper forms. Some of
these reports can be quite challenging using the Visual FoxPro Report Designer or any third-
party reporting tool. Since we can see that plugging in data into a PDF can be straightforward,
why not take advantage of this technique? Generate the FDF reference, plug in the data, and
save it to a temporary file. Using the techniques discussed in the section “How can I replace
the Visual FoxPro Report print preview?”, you can shell Acrobat Reader for the user to
preview the report and they can print it using the Reader interface, or via a button like we
included in the SHAppBuildPermit.pdf example. You can also display the PDF file in a Visual
FoxPro form and manipulate it via the ActiveX interface.

The second example is to place the PDF on a website or in a custom application for data
entry. If there is default data that can be plugged into the PDF form from the application’s
database, use the FDF Toolkit to plug in the data before the user sees the PDF in the reader.
We do this with our Visual FoxPro forms all the time, why should using this interface be
different. On the Internet you will return the FDF file to the browser which will instance the
Acrobat ActiveX control based on the file association of the FDF. The Acrobat control will
request the PDF file from the webserver and the PDF will be displayed with data prefilled in
the browser.

How can | merge PDF files together? (example:
PDFMerger.prg/PDFDirectoryMerger.prg)

This chapter has demonstrated a number of ways to generate PDF files from Visual FoxPro
reports. There are times when merging different reports together into one PDF file is a
requirement of the customer. This section will discuss one way to accomplish merging two
PDFs together using ActiveX components provided with the full version of Adobe Acrobat
and then demonstrate how a complete directory of PDF files can be merged into one.

Acrobat has an ActiveX interface. First you instantiate a reference to the AcroExch.App
object and an object reference to AcroExch.PDDoc for each of the PDF files that you want
merged together. The Open method of the AcroExch.PDDoc opens the PDF file and
establishes an object reference to the PDF. The GetNumPages method returns the number of
pages in the PDF. It should be noted that the number of pages in the PDF file returned from
the GetNumPages is zero based (starts at zero).

The actual merging of the files happens with the InsertPages method. The first parameter
is the page number that you want the merge to start after. Typically you will merge after the
last page, but you can insert a PDF anywhere in another PDF. The second parameter is an
object reference to the second PDF file via the AcroExch.PDDoc object. The third parameter
is the start page. Again the internal page numbers in a PDF file start with zero, so if you want
to get the first page you would pass a zero. The fourth parameter is the number of pages to
insert. The last parameter indicates if you also want the bookmarks inserted as well.

Chapter 8: Integrating PDF Technology 35

Listing 8.2 Partial code listing of PDFMerger.prg which demonstrates how to merge
two PDF files together.

LPARAMETERSt cPDFOne, [t cPDFTwo, [t cPDFCombi ned, [t | ShowAcr obat O
O

#DEFI NEOOcc SAVEFULLOx00010

O

LOCALO oAcr obat ExchApp, [O

00000 oAcr obat ExchPDFOne, I O

000003 oAcr obat ExchPDFTwo, [O

000000 nLast Page, [O

000000 nNurber OF PagesTol nsert, [0 O

000000 cd dSaf et yO

O

| cA dSaf et y(EOSET(" Saf ety") O

SETOSAFETYLOFFO

ERASEt c PDFConbi ned

SETOSAFETY& ¢ dSaf et yO

O

*OCGet Cappropri at elr ef erencest o0Acr obat Cobj ect sO

| 0Acr obat ExchApp I0O0=0CREATEOBIECT(" Acr oExch. App") (0

| oAcr obat ExchPDFOne O=CCREATEOBJECT(" Acr oExch. PDDoc") OO

| 0Acr obat ExchPDFTwo [=[ICREATEOBJECT(" Acr oExch. PDDoc") O

O

* OShow(t he[Acr obat CExchange[w ndow

| FOt | ShowAcr obat O

00 oAcr obat ExchApp. Show() O

ENDI FO

O

*Openlt hefirstOfi | el nCt hedi rect orydOd

| 0Acr obat ExchPDFOne. Open(t cPDFOne) O

O

*[OGet [t he[t ot al Opages[l essConelf or [t he[ast OpageCnuni] zer oCbased] 0
| nLast Page=0 oAcr obat ExchPDFOne. Get NunPages() O 100

O

*Openlt helf il et ol nsert OO

| oAcr obat ExchPDFTwo. Open(t cPDFTwo) [

O

* OGet [t heCnunber Cof Opages[t o[l nsert 00

I nNunber Of PagesTol nsert (=0 oAcr obat ExchPDFTwo. Get NunPages() O
O

*[nsert Ot heCpagesd

| oAcr obat ExchPDFOne. | nsert Pages(| nLast Page, [oAcr obat ExchPDFTwo, [0, [T, O
DD00000000000000000000000000000 nNurber O PagesTol nsert, 0. T.) O
O

*[OCl oselt heCdocunent OO

| oAcr obat ExchPDFTwo. Cl ose() O

O

*[Savelt helenti redocunent , OsavedCas(fi | eCpassedCas(t hi rd0
* Opar anet er [t oCpr ogr aniusi ngOSaveFul | [0 0x0001] . O

| oAcr obat ExchPDFOne. Save(ccSAVEFULL, [t cPDFConbi ned) O

O

*[OCl oselt he[OPDDoc [

| oAcr obat ExchPDFOne. d ose() O

O

* [oselAcr obat CExchangelO

| oAcr obat ExchApp. Exit () O

O

*[Need[t olr el easelt hel[obj ect sO

36 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

RELEASEL oAcr obat ExchPDFTwo[l
RELEASE[oAcr obat ExchPDFOneld
RELEASE[oAcr obat ExchAppO

0

WAl TOCLEARO

O

RETURNCOSPACE(0) O

##NOTE ICON

Acrobat will not merge secured PDF documents. The result of a merge between
one secure PDF document and a non-secure PDF document will be the contents
of the non-secure PDF document.

Document Security

Security Method:

User Password:

Master Password:

Printing:

Changing the Document:

Content Copying or Extraction:
Authoring Comments and Form Fields:
Faorm Field Fill4n or Signing:

Content Accessibility Enabled:
Document Assembly:

Encryption Level:

Acrobat Standard Security
Mo

Mo

Fully Allowed

Mot Allowed

Allowed

Allawed

Allowed

Allowed

Mot Allowed

128-hit RC4 {Acrobat 5.0)

##IMAGE MF08013.tif

Figure 8.14 The Acrobat Document Security screen (File | Document Security...
menu) will inform you of the security settings for the PDF file.

We have found the performance of the merge functionality to be very snappy. We have
merged small PDFs (10 kilobytes) with large PDFs (over 1 megabyte), and large PDFs with
other large PDFs in a couple of seconds or less. The merge process will also merge the
bookmarks in one or both documents.

The merge process is useful when merging in a number of different Visual FoxPro reports
to build an executive package. You can also merge in PDFs generated from other applications
like Word, Excel, or other custom Visual FoxPro applications. The source of the PDF files or

Chapter 8: Integrating PDF Technology 37

the method used to create the PDF does not matter. One example of this could be a header
page template generated from Word with some nice graphics and some fancy fonts. Merge in
an introductory letter created in Word and saved to a PDF. The next few pages could be a
Visual FoxPro report that outlines sales figures for the region. Merge in some nice graphs that
were generated via Automation from the Visual FoxPro custom application to Excel and
printed to a PDF. The last merge could be another summary from the Sales Manager created in
Word and saved to a PDF file. There is no limitation to the merging other than file size and the
amount of disk space.

If you want to merge in a number of PDF files in a directory, you can use code that calls
the PDFMerger program. Here is a partial listing of PDFDirectoryMerger.prg:

DI MENSI ONOI aPDFFi | es[1] O

O

| cFi | eSkel et on(=FOADDBS(ALLTRI M tcDirectory)) t#I'*. pdf " O
| nPDFCount 0OO00=CADI R(| aPDFFi | es, O cFi | eSkel et on) O

O

DOCOCASE

OOCASEO nPDFCount O>010

000 cLast Fi |l eC=t cDirectory(H0 aPDFFi | es[1, (1] O

O

0000FORO nCount C=R2O7O0 nPDFCount O

000000 FO nCount O=0 nPDFCount O

0000000 CLast Oone, Cused™ heOspeci fi edCconbi nelffil ed
00000003 cConbi nedFi | eOd=Ct cPDFConbi nedFi | ed

OOOOOCELSED

00000000 OBui | dOalt enpor aryd

00000000 cConbi nedFi | e C(FOFORCEEXT(ADDBS(SYS(2023)) (H' Tenp" (HCT; O
IOOOOOOOOOOOOOOOOOOOOOO0O0OO0O0O0000000ALL TRI MUSTR(| nCount)), O PDF") O
OOO00OCENDI FO

O

000000 cResul t OO=0Pdf Merger (I cLastFile, 0 O
INONOOOOO00000O00000000000000 ¢Di r ect or y [+ aPDFFi | es[| nCount , (1], I, O
OOOOOOO0000000000000000000000 ¢Conbi nedFi | e) O

000000 cLast Fi | eC=0 cConbi nedFi | ed

OOOCENDFORO

O

OOCASEO nPDFCount C=10

OOO0OCOPYDFI LEO aPDFFi | es[1, 01] OTO™ cPDFConbi nedFi | el

O

OOOTHERW SEO

000 ONot hi ngt oOdoOwi t hChnoC¥ i | esd nOdi rect oryO
ENDCASED

The program loops through all the PDF files in the specified directory and merges them
into one file (based on a parameter passed to the program).

Conclusion

This chapter demonstrates a number of ways to integrate Adobe Acrobat technology with
custom Visual FoxPro applications. The ideas presented show alternative methods of
generating reports, emailing report output, displaying reports in preview mode without the
Visual FoxPro report preview limitations, and capturing information from the users and
presenting the same information using Acrobat Forms. We hope you enjoyed reading it and

38 MegaFox: 1002 Things You Wanted to Know About Extending Visual FoxPro

that you have some idea to how to integrate the power of Acrobat PDF technology with your
custom Visual FoxPro applications

