
Chapter 8: .NET Business Objects 231

Chapter 8
.NET Business Objects

The VFP community has known about the importance of business objects for several
years now. They continue to be extremely important in all types of .NET applications
including Web Forms, Window Forms, and Web Services. This chapter explains what
business objects are, why you should use them, and how to implement them in .NET.

In most .NET books, documentation, white papers, and Internet resources available these days,
you hear little mention of business objects. This isn’t because business objects are
unimportant—just the opposite; they are extremely important in building flexible applications
that are scalable and easy to maintain. Rather, I think this omission is because business objects
are perceived as being too advanced when first learning a new technology. While there may be
some truth to that, hopefully this chapter will help you grasp the concept of business objects
and take your software development to a new level.

In this chapter you’ll learn the basic mechanics of creating and using business objects. In
subsequent chapters, you’ll see how they can be used in Windows Forms, Web Forms, and
XML Web Services.

What is a business object?
A business object is an object that represents a real-world entity such as a person, place, or
business process (Figure 1).

Figure 1. Business objects can represent real world entities such as a person, place,
or business process.

232 .NET for Visual FoxPro Developers

For example, in the real world, you have clients. You can create a business object that
represents clients. In the real world, you have inventory and payments. You can create
business objects that represent inventory and payments.

This concept isn’t completely foreign to Visual FoxPro developers. When you design a
data model, you often create data that represents the characteristics of real-world entities. For
example, you create a client table that represents the characteristics of a client in the real
world—a name, address, phone number, e-mail address, and so on. You can create an
inventory table that represents the characteristics of different inventory items, a payment table
that represents the characteristics of payments, and so on (Figure 2).

Figure 2. Data can represent the characteristics of real world entities, but this is only
half the picture.

Modeling the characteristics of a real-world entity by means of data is only half the story.
The other half is modeling its behavior—and you do that by means of code. This includes data
manipulation code as well as any business logic (or application logic) code associated with the
entity. For example, you may have code that calculates the tax on an invoice, totals the
payments made by a client, or calculates a client’s credit limit. Business objects bring together
both the characteristics and behavior of a particular entity (Figure 3).

Chapter 8: .NET Business Objects 233

Figure 3. Business objects bring together both the characteristics and behavior of a
single real-world entity.

In an application that uses business objects, all the code for a particular entity is stored in
the corresponding business object. For example, all the code that has something to do with
clients is stored in the client business object; all the code that has something to do with
inventory is in the inventory business object; and yes, all the code that has something to do
with payments is stored in the payments business object.

The simplest aspect of modeling an entity’s behavior is data manipulation. Just about
every business object needs methods that allow you to add, edit, retrieve, save, and delete
records—these translate to actions that occur in the real world. For example, when you acquire
a new client, this corresponds to the ability of a business object to add a new record. When
you lose a client, this may correspond to the ability of a business object to delete a record (or
possibly mark it as “inactive”). When some attribute of a client changes (address, phone
number, e-mail address), this corresponds to the ability of a business object to retrieve, edit,
and save a client record.

Examining business objects in popular software applications
The concept of using business objects in software applications is very common among popular
off-the-shelf software packages. Examining the business objects in these applications can help
you better understand how to implement business objects in the software you create.

A good place to start is by exploring the business object model of Microsoft Word. The
primary business object in this model is the Document object, which represents a real-world
Microsoft Word document. You can view Word’s object model by using Visual Studio .NET’s
Object Browser. To launch the Object Browser, select View | Other Windows | Object Browser
from the menu. To open up the Microsoft Word object model, click the Customize button at
the top of the Object Browser, which launches the Selected Components dialog. Click the Add
button, which launches the Component Selector dialog (Figure 4). Click the COM tab and
select Microsoft Word 9.0 Object Library in the component list (the version number differs
depending on which version of Microsoft Word is on your computer). Click the Select button
to add Microsoft Word to the Selected Components list, and then click OK to close the

234 .NET for Visual FoxPro Developers

Component Selector dialog. Click the OK button in the Selected Components dialog to add it
to the Object Browser. This adds a Word node to the Object Browser tree view.

Figure 4. The Component Selector allows you to add components to the Object
Browser for viewing.

If you expand the Word node, you see quite a few items listed. If you select the Document
business object in the left pane, it displays the members of the Document object in the right
pane (Figure 5).

Figure 5. You display the members of a business object by selecting the object in the
left pane of the Object Browser.

Chapter 8: .NET Business Objects 235

 You can determine which items are business objects in the Object Browser
because they have the same icon as shown to the left of the Document
business object shown in Figure 5.

You can get quite an education by examining the methods of the Document business
object. For example, in the real world you can perform a wide variety of actions against a
document such as:

• Check grammar

• Check spelling

• Print it

• Undo changes

• Close It

In the Document business object the methods represent these different actions:

• CheckGrammar

• CheckSpelling

• PrintOut

• Undo

• Close

For another example, open up the Microsoft Internet Controls object library in the VS
.NET Object Browser (Figure 6).

Figure 6. The Internet Explorer WebBrowser business object represents a real-world
web browser.

This library contains a WebBrowser business object that represents a real-world browser.
It contains methods such as GoBack, GoForward, GoHome, Navigate, Refresh, and so on.
Each one represents real-world actions you can perform with a web browser.

236 .NET for Visual FoxPro Developers

One of the main points to realize from looking at these object models is when Microsoft
created these tools they did not put the application logic in the user interface of Microsoft
Word and Internet Explorer. Instead, they created business objects possessing events and
methods that contain the business logic. The methods are intuitive and perform a discrete
action that accomplishes a well-defined objective. If they change the interface of the tool, they
don’t have to move or rewrite all of the internal code that handles operations like SpellCheck
and GoHome.

Monolithic vs. three-tier applications
A monolithic application is a software application where the user interface, business logic, and
data are inextricably bound to each other. Typically this type of application does not use
business objects. Despite the benefits that business objects can provide, most developers
(Visual FoxPro and otherwise) continue to build monolithic applications. This should come as
no surprise, because most of the software development tools on the market actually encourage
you to build applications this way.

For example, think about the Data Environment builder in Visual FoxPro. The Form
Designer and Report Designer allow you to use the Data Environment builder (Figure 7) to
specify the data to be loaded by a form or report.

Although these tools can help you build applications rapidly, they don’t provide the most
scalable solution. For example, if you load Visual FoxPro tables into the data environment of a
form, what happens when you want to move to SQL Server or Oracle? You have to spend
weeks or months tearing apart your application and putting it back together again.

Figure 7. The Data Environment builder in Visual FoxPro 7 encourages you to create
monolithic applications by binding your user interface directly to your data.

Chapter 8: .NET Business Objects 237

As mentioned at the beginning of this chapter, most .NET documentation, books, and
periodicals also demonstrate creating monolithic applications. Not using business objects
means the data access code is placed directly in the user interface, making for a very
monolithic application.

In contrast, Figure 8 shows a three-tier system architecture that includes business objects.
This is a far more flexible architecture where any tier can be swapped out (for more
information on three-tier architecture, see Chapter 7, “Data Access with ADO.NET”).

Figure 8. Business objects allow you to create a three-tier architecture that is far
more scalable than a monolithic architecture.

For example, you can create a smart client Windows desktop application for tier 1, and
then later you can swap it out with a thin client Web browser interface, without affecting the
rest of the application (Figure 9). You can also change the data tier from Visual FoxPro to
SQL Server without changing your application logic.

Figure 9. Three tier architectures allow you to swap between a fat client Windows
desktop front end and a thin client Web browser front end without changing the
application logic.

238 .NET for Visual FoxPro Developers

Additional business object benefits
In addition to the scalability gained with business objects, there are other benefits that come
from using them.

Normalizing application logic
One benefit of using business objects is normalizing your application logic. As a Visual
FoxPro developer, you know all about normalizing data—eliminating redundancies in the data
structure. But how conscious are you of eliminating redundancies in your application logic?
When you work with a team of developers, the chances of creating duplicate application logic
increases dramatically—especially when creating a monolithic application. You can have five
different developers create the same routine five different times when the code is stored in the
user interface. Each developer working on a different form has no idea that another developer
has already created the code they need.

In contrast, when you use business objects, even when developers work on different
forms, each form uses the same set of business objects. Each business object acts as a common
repository for code that relates to a particular real-world entity. The chances of adding two or
more methods to a business object that perform the same function are pretty slim—especially
if you give your methods meaningful names!

Normalizing your application logic means you write, debug, and maintain less code.
When a change request comes through there’s only one place in your application that needs to
change.

Solving the “where’s the code” syndrome
Have you ever played “where’s the code?” with your software applications? When you create
a monolithic application, the code can be located just about anywhere—and Murphy’s law
predicts that the code you want is probably tucked inside the Click method of a button located
on page 3 of a “sub” page frame contained within another page frame.

Finding application code is much easier when you use business objects. For example,
if you search for code that has something to do with invoicing, chances are very high it can
be found in the Invoice business object. If your application has a bug in the logic that
performs calculations on inventory, you can bet that the code is probably in the Inventory
object. Surfacing your application logic (raising it from the depths of the user interface) and
exposing it in high level business objects (Figure 10) makes your application far easier to
debug and maintain.

Chapter 8: .NET Business Objects 239

Figure 10. Surfacing your application logic into business objects (represented by the
colored cubes) makes it easier to find the code you’re looking for, helps normalize
your application logic, and lets you conceive and create complex software systems.

Ease of conceiving and creating complex software systems
When your code is stuck “in the weeds” of your application’s user interface, it can be very
difficult to step back and see the big picture of a complex software system.

However, when you place your application logic in business objects, it’s far easier to see
the big picture and think “big thoughts”. Rather than poring through a morass of methods
within your user interface code, you can conceptualize complex processes as high-level
business objects representing real-world entities and interacting with each other.

I have the same experience over and over again when I visit software development
companies to help them solve some of their more thorny issues. As soon as they lay out
business objects on a diagram and begin conceptualizing at a higher level, problems that were
previously impossible to wrap their minds around can be grasped and solved.

Once you learn how to use business objects, you’ll never go back again!

A simple example
So, how do you transform a monster Click event into a business object model? Although this
isn’t a book about analysis and design, here is a simple example of how this works.

Consider the example of a point-of-sale invoicing application. If you’re creating a
monolithic application, you might have an Invoice form that has a Save button. Within the
Click event of the Save button, you might have code that does the following:

240 .NET for Visual FoxPro Developers

• Scans through each invoice item calculating the tax (if any) on each item.

• Adds the tax and item cost to the invoice header total.

• Subtracts the invoice item quantity from the “quantity on hand” in inventory.

• Saves the invoice items.

• Saves the invoice header

How would you handle this using business objects? Typically, you should create a
different business object for each table in your back end database (this is a guideline, not a “set
in stone” rule). In this example, you might create Invoice, InvoiceItem, Tax, and Inventory
business objects.

Figure 11 shows a UML sequence diagram demonstrating how you might implement
business objects to handle all of the processes involved in saving an invoice.

For more information on creating and reading UML sequence diagrams, see
my online article “UML Sequence Diagrams” at the following url:

http://www.devx.com/codemag/articles/2002/March/umlsequence/umlsequence-
1.asp

The stick figure at the top left of diagram represents the Sales Rep who interacts with the
application to save an invoice. To the immediate right of the SalesRep a box labeled “UI” is a
generic representation of the application’s user interface. The Save() message line pointing
from the SalesRep to the UI represents the SalesRep pressing the Save button.

The rest of the boxes to the right of the UI box represent the application’s business
objects. Notice the arrow labeled “Save()” between the UI object and the Invoice object. This
indicates the Invoice object has a Save() method being called by the user interface. The
Invoice object in turn sends a Save() message to the InvoiceItems object. The InvoiceItems
object calls a method on itself named SaveItem(). The asterisk preceding the SaveItem()
method indicates this method is called multiple times—in this case, once for each invoice item.
From within the SaveItem() method, a call is made to the Tax object (CalcTax) to calculate tax
on the item and to the Inventory object (RemoveFromStock) to remove each item from stock.

Chapter 8: .NET Business Objects 241

Figure 11. This sequence diagram shows how you might place application logic in
business objects to save an invoice.

Note that I haven’t included any parameters in this diagram. I did this to make it easier to
read. However, in reality most methods in this diagram would receive parameters. For
example, the RemoveFromStock() method might receive an inventory item primary key and a
quantity, so it can determine which inventory item to adjust and by how much.

The main purpose of this example is to show you the big picture of how to use business
objects in applications. You will see more detailed examples of using business objects in
Chapter 9, “Building .NET Windows Forms Applications”, Chapter 10, “Building Web
Applications with ASP.NET”, and Chapter 12, “XML Web Services”.

Making .NET data access easy
If nothing I’ve mentioned so far strikes you as a compelling reason to use business objects, the
fact that business objects make it much easier to use ADO.NET may be the reason you are
looking for.

As Chapter 7, “Data Access with ADO.NET” explained, ADO.NET is very flexible, very
scalable, and very object-oriented, but it can be difficult to learn and use. Business objects
change all that by creating a high-level interface to ADO.NET that doesn’t require all
developers on your team to be familiar with creating connections or manipulating and
coordinating data objects.

You write your data access logic once, store the code in a family of data access classes
used by your business objects, and never worry about the specifics of ADO.NET again—until
Microsoft changes the ADO.NET object model.

This actually brings up another compelling reason to create a layer of abstraction between
your application and ADO.NET. Microsoft is notorious for changing its data access model
every few years. If you follow the pattern set by many .NET code samples found in books,
magazines, and online articles, you’ll end up sprinkling lots of data access code throughout

242 .NET for Visual FoxPro Developers

your user interface. This becomes a problem if Microsoft makes changes to ADO.NET. It will
force you to update all of this data access code accordingly. However, if you use business
objects, you have only one place to change your data access code—within the data access
classes of the business object.

Enforcing business rules
One of the primary jobs of a business object is to enforce business rules. Business rules fall
into two broad categories:

1. Data integrity rules – This encompasses rules that enforce things such as required
fields, field lengths, ranges, and so on.

2. Domain rules – This refers to high-level business rules such as “You can’t create an
invoice for a client who is over their credit limit”.

Typically, an application checks business rules at two different points in time. The first is
when trying to save a record. After a user clicks the Save button (Windows Forms application)
or the Submit button (Web Forms application), the system needs to check if any rules
pertaining to the record being saved are broken, and if so, display a message with showing the
broken rules.

The second place rules are often checked is when the user leaves a data entry control. For
example, when the user leaves an e-mail text box, you may want to immediately check if the e-
mail is valid. You can call a business rule method to verify this. For details, check out the
section, “The BusinessRules class”, below.

.NET business object architecture
To help you grasp the concept of business objects, the sample code that comes with this book
provides a simple business object class you can use to access either FoxPro or client-server
data. Figure 12 shows a UML class diagram documenting the basic architecture of this
business object class.

Figure 12. Good business object architecture gives you a lot of flexibility—especially
in the area of data access.

Chapter 8: .NET Business Objects 243

The architecture of the business object classes in this book is by no means
the one “right” way. This architecture is simple enough to show you the
basic mechanics of business objects while still having enough advanced
features to demonstrate the flexibility and scalability business objects
provide. You’ll definitely want to enhance this architecture for more robust
production systems.

Each of these objects is covered in detail in the following sections.

The BusinessObject class
The BusinessObject class, shown in Figure 12, is the primary class in the business object
architecture that the user directly interfaces with.

The sample code in this chapter is set to use the SQL Server Northwind
database by default.

Creating subclasses of the BusinessObject class
You create subclasses of the BusinessObject class that represent entities in your application
domain. For example, in this book’s sample code, four business objects have been subclassed
from BusinessObject:

• Employee

• Customer

• Orders

• OrderDetail

When you create a subclass of BusinessObject, two important properties should be set
right away—the TableName and FieldList. The TableName property specifies the primary
table in the database with whichwhere the business object retrieves and manipulates data. The
FieldList property specifies the default list of fields included in the DataSet when you retrieve
data from the back end. This property is set to “*” by default, which specifies that all fields in
the table are returned.

You can easily change the value of these properties in your custom business object’s
constructor method. For example, the following code defines a Customer class derived from
BusinessObject and sets the value of TableName and FieldList.

In C#:

public class Customer : BusinessObject
{
 /// <summary>
 /// Customer constructor
 /// </summary>
 public Customer()

244 .NET for Visual FoxPro Developers

 {
 this.TableName = "Customer";
 this.FieldList = "CustomerID, CompanyName, " +
 "Address, City, PostalCode, Country, Phone";
 this.BusinessRuleObject = new CustomerRules();
 }
}

And in Visual Basic .NET:

Public Class Customer
 Inherits BusinessObject

 '/ <summary>
 '/ Customer constructor
 '/ </summary>

 Public Sub New()

 Me.TableName = "Customer"
 Me.FieldList = "CustomerID, CompanyName, " & _
 Address, City, PostalCode, Country, Phone"
 Me.BusinessRuleObject = New CustomerRules()

 End Sub 'New

End Class 'Customer

Retrieving data with the GetDataSet method
The BusinessObject class has a GetDataSet method that executes a SQL SELECT statement
and returns a DataSet containing the result set. This method has two overloads.

In C#:

protected DataSet GetDataSet()
{
 string Command = “SELECT “ + this.FieldList + “ FROM “ + this.TableName;
 return this.GetDataSet(Command);
}

protected DataSet GetDataSet(string command)
{
 return DataAccessObject.GetDataSet(command, this.TableName);
}

And in Visual Basic .NET:

Protected Function GetDataSet() As DataSet

 Dim Command As String = "SELECT " & Me.FieldList & " FROM " & Me.TableName
 Return Me.GetDataSet(Command)

End Function 'GetDataSet

Chapter 8: .NET Business Objects 245

Protected Function GetDataSet(command As String) As DataSet

 Return DataAccessObject.GetDataSet(command, Me.TableName)

End Function 'GetDataSet

The first method signature accepts zero parameters. It simply uses the FieldList and
TableName properties to automatically build a SELECT command that it passes to the second
overload of the GetDataSet method. The second overload accepts a single “command”
parameter that it passes to the data access object (discussed below) for execution. It also passes
the TableName property, used to specify the name of the main DataTable within the DataSet.

The GetDataSet methods are marked as protected, because you typically don’t want to
open your back end database to this sort of carte blanche querying capability. For example, if
the second GetDataSet method was public, there’s nothing stopping someone from issuing a
SELECT * that returns all fields and records in a table with millions of records.

To retrieve data from a custom business object, you typically create methods that build a
SELECT string and pass it to the second overload of GetDataSet. For example, the following
methods of the Customer business object retrieve a customer by ID and phone number.

In C#:

public DataSet GetCustomerByID(string customerID)
{
 return this.GetDataSet("SELECT " + this.FieldList + " FROM " + this.TableName
+
 " WHERE customerID='" + customerID + "'");
}

public DataSet GetCustomerByPhone(string phone)
{
 return this.GetDataSet("SELECT " + this.FieldList + " FROM " + this.TableName
+
 " WHERE Phone = '" + phone + "'");
}

In Visual Basic .NET:

Public Function GetCustomerByID(ByVal customerID As String) As DataSet

 Return Me.GetDataSet(("SELECT " & Me.FieldList & " FROM " & Me.TableName & _
 " WHERE customerID='" & customerID + "'"))

End Function 'GetCustomerByID

Public Function GetCustomerByPhone(ByVal phone As String) As DataSet

 Return Me.GetDataSet(("SELECT " & Me.FieldList & " FROM " & Me.TableName & _
 " WHERE Phone = '" & phone & "'"))

End Function 'GetCustomerByPhone

246 .NET for Visual FoxPro Developers

Here is an example of how you call the GetCustomerByPhone method from client code.
In C#:

Customer CustomerObj = new Customer();
DataSet dsCustomers = CustomerObj.GetCustomerByPhone("555-3425");

And in Visual Basic .NET:

Dim CustomerObj As New Customer()
Dim dsCustomers As DataSet = CustomerObj.GetCustomerByPhone("555-3425")

Saving data with the SaveDataSet method
The SaveDataSet method accepts a single DataSet parameter and updates the back end
database with any changes (updates, inserts, deletes) found in the DataSet.

Here is an example of how you call the SaveDataSet method to update a DataSet.
In C#:

Employee EmployeeBizObj = new Employee();

// Retrieve an Employee record
DataSet dsEmployee = EmployeeBizObj.GetEmployeeByID(1);
DataRow drEmployee = dsEmployee.Tables[0].Rows[0];

// Change a value
drEmployee["Title"] = "Vice president";

// Save the change
int RowsUpdated = EmployeeBizObj.SaveDataSet(dsEmployee);

And in Visual Basic .NET:

Dim EmployeeBizObj As New Employee()

' Retrieve an Employee record
Dim dsEmployee As DataSet = EmployeeBizObj.GetEmployeeByID(1)
Dim drEmployee As DataRow = dsEmployee.Tables(0).Rows(0)

' Change a value
drEmployee("Title") = "Vice president"

' Save the change
Dim RowsUpdated As Integer = EmployeeBizObj.SaveDataSet(dsEmployee)

Before the actual update occurs, this method checks to see if there is a business rule object
attached and, if so, calls that object’s CheckRules method. If this method is successful, it
returns the number of records containing changes that were persisted to the back end (zero or
more). If any business rules are broken, this method returns a –1. For details on how to handle
broken business rules, see the next section.

Chapter 8: .NET Business Objects 247

The BusinessRules class
The BusinessRules class enforces business rules and keeps track of any rules that are broken.
Typically, you should create a subclass of the BusinessRules class for each of your business
objects. For example, in the samples for this book, the Customer business object has a
CustomerRules object, the Employee object has an EmployeeRules object, and so on.

To associate a business rule class with a business object, you need to instantiate it in the
constructor of the business object. For example, you add the following code to the constructor
of the Customer business object to instantiate and associate the CustomerRule object with it.

In C#:

public Customer()
{
 this.BusinessRuleObject = new CustomerRules();
}

And in Visual Basic .NET:

Public Sub New()
 Me.BusinessRuleObject = New CustomerRules()
End Sub 'New

Typically, you create a separate method in the rules object for each different business rule.
For example, the CustomerRules object has IsCompanyNameValid, IsPostalCodeValid, and
IsPhoneValid methods. Breaking these methods out allows you to call each method
individually (for example, from the event of a user interface control).

In most cases, you also need to check all business rules when you try to save a record.
How can this be done if you have each rule in a separate method? The answer is to add a call
to each business rule method in the CheckRulesHook method of the BusinessRules class. For
example, the CustomerRules object contains the following code in its CheckRulesHook
method.

In C#:

 public override void CheckRulesHook(DataSet ds, string tableName)
 {
 DataRow dr = ds.Tables[tableName].Rows[0]; // Get the first DataRow

 this.IsCompanyNameValid(dr["CompanyName"].ToString());
 this.IsPostalCodeValid(dr["PostalCode"].ToString());
 this.IsPhoneValid(dr["Phone"].ToString());
 }

248 .NET for Visual FoxPro Developers

And in Visual Basic .NET:

Public Overrides Sub CheckRulesHook(ds As DataSet, tableName As String)

 Dim dr As DataRow = ds.Tables(tableName).Rows(0) ' Get the first DataRow

 Me.IsCompanyNameValid(dr("CompanyName").ToString())
 Me.IsPostalCodeValid(dr("PostalCode").ToString())
 Me.IsPhoneValid(dr("Phone").ToString())

End Sub 'CheckRulesHook

The BusinessObject class automatically calls the CheckRulesHook method before it tries
to save a record. It passes the DataSet to be saved as well as the name of the Table within the
DataSet. If any rules are broken, the business object does not save the data in the DataSet (the
next section shows how you can retrieve and display broken rules).

In this particular implementation, the BusinessRules class only checks the first record in
the DataSet. You can enhance this method to check multiple records in a DataTable.

Checking for broken business rules
If the BusinessObject’s SetDataSet method returns a –1, you call the GetBrokenRules method
of the BusinessObject class to determine the business rules that were broken. This list of
broken rules can then be displayed to the user. For example, here’s code that checks for
broken rules when saving an order.

In C#:

Orders OrderObj = new Orders();
DataSet dsOrder = OrderObj.GetOrderByOrderID(10248);
DataRow drOrders = dsOrder.Tables[0].Rows[0];

drOrders["EmployeeID"] = 0;

int RowCount = OrderObj.SaveDataSet(dsOrder);
if (RowCount == -1)
{
 string BrokenRuleList = "";
 foreach (string BrokenRule in OrderObj.BusinessRuleObject.BrokenRules)
 {
 BrokenRuleList += BrokenRule + "\n";
 }
 MessageBox.Show("Broken Rules: \n\n" + BrokenRuleList, "Business Rules");
}
else
{
 MessageBox.Show("Order successfully saved","Business Rules");
}

And in Visual Basic .NET:

Dim OrderObj As New Orders()
Dim dsOrder As DataSet = OrderObj.GetOrderByOrderID(10248)
Dim drOrders As DataRow = dsOrder.Tables(0).Rows(0)

Chapter 8: .NET Business Objects 249

drOrders("EmployeeID") = 0

Dim RowCount As Integer = OrderObj.SaveDataSet(dsOrder)
If RowCount = - 1 Then

 Dim BrokenRuleList As String = ""
 Dim BrokenRule As String

 For Each BrokenRule In OrderObj.BusinessRuleObject.BrokenRules
 BrokenRuleList += BrokenRule + ControlChars.Lf
 Next BrokenRule

 MessageBox.Show("Broken Rules: " + ControlChars.Lf + _
 ControlChars.Lf + BrokenRuleList, "Business Rules")
Else
 MessageBox.Show("Order successfully saved", "Business Rules")
End If

This code instantiates the Orders business object, retrieves an order, and saves the DataSet
with a broken rule (the Employee ID is empty). It then checks the return value of the
SaveDataSet method to see if any rules are broken (indicated by a return value of –1). If any
rules are broken, it retrieves all broken rules from the BusinessRule object. A reference to the
BusinessRule object is stored in the business object’s BusinessRuleObject property.
BrokenRules is a string collection contained within the BusinessRule object. The “for each”
loop iterates through the string collection building a string containing all broken rules which it
then displays in a message box.

Some developers like to display all the broken rules in a single dialog. You can do this by
simply concatenating the broken rules together and displaying them. Another option is to have
your business object return broken rules as an XML string. You can then display the broken
rules in a list box, DataGrid, etc.

Data access classes
Figure 12 showed the BusinessObject class has an associated data access class it uses to
retrieve and manipulate data. As shown in Figure 13, there is actually a family of data access
classes used to access different types of data.

Figure 13. Providing a family of data access classes for your business objects allows
you to access different data sources (Visual FoxPro, SQL Server, Oracle) without
changing your business object.

250 .NET for Visual FoxPro Developers

The abstract DataAccessBase class defines the interface for the family of data access
classes. The DataAccessSql class allows you to access SQL Server 7.0 and later, acting as a
wrapper around the .NET SQL Server data provider. The DataAccessOleDb class allows you
to access any data with an OleDB Data Provider, acting as a wrapper around the .NET OleDB
data provider.

By default, the BusinessObject class uses the DataAccessSql class to access the
Northwind SQL Server database. To change the BusinessObject class (and all subclasses) to
use the DataAccessOleDb class instead, you change its DataAccessClass property from
“DataAccessSql” to “DataAccessOleDb”.

Conclusion
You don’t have to use business objects in your .NET applications, but doing so makes your
applications far more flexible, extensible, and maintainable. In this chapter you’ve seen how to
design and implement business objects. For examples showing how business objects can be
used in different types of applications, see Chapter 9, “Building .NET Windows Forms
Applications”, Chapter 10, “Building Web Applications with ASP.NET”, and Chapter 12,
“XML Web Services”.

