
Chapter 8: Report Variables 147

Chapter 8
Report Variables

Variables are essential to developing software. It would be impossible to create a
practical application without them. Reports are no different! There are many situations
when variables are essential to developing reports. You might need a variable to count
the number of lines on a page or to track the total sales amount for each customer.
Perhaps, you need to count the number of customers for each Sales Rep. Whatever
the reason, the Visual FoxPro Report Writer provides a mechanism for creating and
maintaining variables within a report.

The Visual FoxPro Report Writer has the ability to use built-in Report Variables. Some
developers avoid this feature at all costs and adhere to the practice of preparing the data,
including calculations, prior to running the report. The reasoning behind this practice is that
your code is more flexible to other forms of output. Once the data has been prepared, it’s a
quick change to send the results to a spreadsheet instead of Visual FoxPro’s report engine. If
you have variables and calculations in your report, the change becomes much more complex.

That said, I still use Report Variables on many of the reports I design. Sometimes, I
prepare the data in advance, but not always. I just can’t bring myself to justify building a
temporary cursor of 50,000 records when it contains the exact same data as the original table
and one additional field that is the result of a simple count or sum function. I know FoxPro is
fast, but one of my main concerns when I develop software is maximizing performance for my
users, and making them wait while that cursor is built just rubs me the wrong way. So it just
depends on the situation and needs of the report I’m designing as to which method I use.

Report Variables are similar to other variables in Visual FoxPro in that they can contain
data of different types such as character, numeric, or dates. They also have a scope, which is
public. This means you can access a VFP Report Variable from outside of the report, such as a
UDF or a method call made by the report.

There are two main reasons for using Report Variables. The first is to take advantage of
having the Report Writer perform one of its built-in calculation functions. You simply define a
Report Variable, set it up as a calculated variable, and that’s it. The Report Writer takes care of
processing the variable for each record, such as incrementing a Count variable or totaling a
Sum variable. The second reason for using Report Variables is to extend the built-in
calculation functions on Report objects. See a pattern here? Report Variables are most often
used for performing calculations.

Creating variables
Report Variables are created through the Report Variables dialog (shown in Figure 1), which
can be displayed by selecting Report | Variables… from the main VFP Menu bar. The
Variables list box in the upper left corner of this dialog lists all the Report Variables defined
for this report. As you select an item from the list, the rest of the information on the dialog
refreshes to reflect the properties of the selected Report Variable.

148 The Visual FoxPro Report Writer: Pushing it to the Limit and Beyond

Figure 1. Use the Report Variables dialog to create variables used within a report.

Variable name
To create the first Report Variable, enter a name in the first box of the Variables list box. To
create the second Report Variable, enter the name in the second box of the Variables list box.
Each time you add a new Report Variable, an additional box is added in the list box so there’s
always an empty box to enter a new Report Variable.

The rules for naming a Report Variable are the same rules for naming any other VFP
variable and are as follows.

• Use only letters, underscores, and numbers.

• Use 1-128 characters.

• Begin the name with a character or underscore.

• Avoid Visual FoxPro reserved words.

My Tech Editor, Dave Aring, brought up a very good point in regards to naming Report
Variables. We’re all accustomed to the standard naming conventions of prefixing variables
with a character to identify the scope. For example, global variables are prefixed with “g”,

Chapter 8: Report Variables 149

private variables are prefixed with “p”, local variables are prefixed with “l”, and parameters
are prefixed with “t”. So shouldn’t we prefix Report Variables with something to identify them
as Report Variables? Thanks, Dave! That’s a great suggestion and from now on, I’m going to
start prefixing my Report Variables with “r”. Of course, don’t hold me to this as you read
through the rest of the book—old habits are hard to break.

Insert and Delete
To insert a new Report Variable in a position other than the end of the list, position the
cursor in the list box and then select the Insert button. This moves the current item and any
subsequent items down and inserts a new item at the cursor position.

To delete an existing Report Variable, position the cursor on the Report Variable and
select the Delete button.

Value to store
The Value to store text box is where you assign a value to the Report Variable by entering any
valid VFP expression. As each record is processed by the Report Writer, the expression is
evaluated and the results are assigned to the Report Variable.

The expression can be as simple as static information such as “Fox Rocks!”, a field such
as MyTable.MyField, a complex expression such as INT((MyField + 20) / 100), or it can even
use UDFs or method calls such as MyUDF(MyField). You may also select the ellipse button
(…) to the right of the Value to store text box to invoke the Expression Builder dialog to help
you enter a more complex expression.

Release after report
The “Release after report” check box is supposed to determine whether or not the Report
Variable is released when the report is done. Remember, Report Variables are defined as
public, which means they stay in memory until CLEAR ALL, CLEAR MEMORY, RELEASE
<variable>, or RELEASE ALL is executed. However, the VFP Report Writer has a bug and
never bothers to release the Report Variables.

The VFP Report Writer ignores the “Release after report” check box
and never releases the Report Variables. If you intend to reference the
Report Variables after the report is finished, make sure this option is
not checked (just in case this bug is fixed in a future version of Visual

FoxPro). For now, the only foolproof way to release Report Variables is to use the
RELEASE command after calling the report.

Using calculations
Report Variables have seven built-in mathematical calculation options: Count, Sum, Average,
Lowest, Highest, Std. deviation (standard deviation), and Variance. The calculations allow you
to process data from all the detail records and print information such as subtotals for each
customer or grand totals at the end of the report.

The value of the Report Variable is primed to the Initial value when the report begins.
Then, as each record is processed, the Value to store expression is evaluated and used in the

150 The Visual FoxPro Report Writer: Pushing it to the Limit and Beyond

calculation. When the Report Writer reaches the reset point defined for the calculation, the
value of the Report Variable is reset to the Initial value. Processing then resumes with the next
record, building the calculation again. Whenever a calculated Report Variable prints on a
report, it’s the value of the calculation and not the value of the Value to store expression that
prints. This fact often confuses developers.

Calculate
The first step in telling the Report Writer to apply an internal calculation to this variable is to
select one of the following options from the Calculate option group.

• Count: This option counts the number of times this Report Variable is processed—in
other words, it counts the number of records processed. The value of the expression
defined in the Value to store text box is immaterial to the results of this count.
However, the Initial value is very important to the results, as the count begins with
this value.

• Sum: This option keeps a running total based on the results of the Value to store
expression. As each record is processed, the Report Writer evaluates the expression
and adds the results to the Report Variable. If the result of the expression does not
return a numeric value, this Report Variable is set to .F.

• Average: This option performs an arithmetic mean (average) based on the Value to
store expression. As each record is processed, the Report Writer keeps a separate
running total based on the Value to store expression. Then, for the value of this
Report Variable, it divides the accumulative total by the number of records processed
to obtain the average. If a currency field is used in the Value to store expression, the
results are returned with a precision of four decimal places. Otherwise, two decimal
places are returned. If the Value to store expression returns a non-numeric value, this
Report Variable is set to .F.

• Lowest: This option keeps track of what the lowest value of the Value to store
expression is for all the records processed so far. However, the Initial value is also
taken into account and can really skew the results. For example, if the data contains
all positive numbers greater than zero, the initial value of zero is always less than any
of the data. You must remember to set the Initial value to at least one more than the
highest value you expect from the Value to store expression of all the records. Note
that non-numeric data types (such as character and date) can be returned from the
Value to store expression.

• Highest: This option keeps track of what the highest value of the Value to store
expression is for all the records processed so far. However, as with the Lowest
option, the Initial value is also taken into account. So, again, you must remember to
set the Initial value to something lower than the lowest value that results from the
Value to store expression of all the records. And don’t be so quick to set it to zero
and call it good. If the Value to store expression returns any negative values, you
have to set an Initial value to a negative number less than any of the negative
numbers returned by the Value to store expression. Note that non-numeric data types
(such as character and date) can be returned from the Value to store expression.

Chapter 8: Report Variables 151

• Std. Deviation: This option can be used to calculate the square root of the variance
(described next). If the Value to store expression returns a non-numeric value, this
Report Variable is set to .F.

• Variance: This option can be used to measure how spread out a distribution is. It’s
computed by taking the average squared deviation of each number from its mean. So
what does that mean in English? I don’t know! How about I explain it in terms we all
know—FoxPro. The following code prints the Variance and Standard Deviation for
the series of numbers 1-10. The code can be found in a program called Variance.PRG
and is included in the source code available with this book. The results are shown in
Figure 2. If the Value to store expression returns a non-numeric value, this Report
Variable is set to .F.

*-- Variance and Standard Deviation (calculated manually)

*-- Prime
nTotal = 0

*-- Loop thru the values 1-10
FOR n = 1 to 10

 *-- What's the average so far
 nTotal = nTotal + n
 nAverage = nTotal / n

 *-- Do another loop
 nNewTotal = 0
 FOR x = 1 TO n
 nNewTotal = nNewTotal + (x - nAverage)^2
 ENDFOR

 *-- Calculate the variance and standard deviation
 nVariance = nNewTotal / n
 nDeviation = SQRT(nVariance)

 *-- Print the variance and standard deviation
 ? ' This value: ', n, ;
 ' Variance: ', nVariance, ;
 ' Deviation: ', nDeviation

ENDFOR

Figure 2. This example shows the results of the Variance and Standard Deviation of a
series of numbers (1-10).

152 The Visual FoxPro Report Writer: Pushing it to the Limit and Beyond

Initial value
The VFP Report Writer evaluates the Initial value at the beginning of the report and uses the
results to prime the variable. It also resets the Report Variable to the Initial value whenever a
reset point is reached. The default Initial value is zero.

When using calculations, it’s very important to set this value to a meaningful value. As
mentioned previously, when using some calculations such as Lowest and Highest, the Initial
value is very important to the results of the calculation. Your results might be skewed if you’re
not careful in choosing an appropriate Initial value.

It’s also very important to make sure the results of the Initial value is of the same data
type as the results you desire from the calculation. Very strange results can happen when the
data type of the Initial value is not as expected, especially when dates are used. For example, if
you set the Value to store expression to a numeric data type, set the Initial value expression to
a date data type, and set the calculation to Count, the results returned to this Report Variable is
the date in the Initial value for every record. Or even stranger, change the Value to store
expression to a currency field. This time the Julian Day Number of the date in the Initial value
is returned to this Report Variable for every record. Not exactly the Count you were expecting!

Reset at
The Reset at drop-down combo box is used to tell the Report Writer when to reset the Report
Variable to the Initial value. The default is End of Report. The following options are available.

• End of Report: The Report Variable is only primed once at the beginning of
the report.

• End of Page: The Report Variable is reset at the end of each page. The exact point
of the reset occurs after all the bands on the current page print and before any bands
on the new page print. This means that if you use the Report Variable in the Page
Footer band, it still contains the value of the last detail record on the page. If you use
the Report Variable in the Page Header band, it contains the value returned by the
Initial value.

• End of Column: The Report Variable is reset at the end of each column. This option
is only available when multiple column sets have been set up for the report. This
means that if you use the Report Variable in the Column Footer band, it still contains
the value of the last detail record for that column. If you use the Report Variable in
the Column Header band, it contains the value returned by the Initial value.

• <Data Grouping>: In addition to the three standard options, an additional Reset at
option is available for each Data Grouping defined on the report. This allows you to
reset the Report Variable each time a new value is encountered for the Data Group.
This means that if you use the Report Variable in the Group Footer band, it still
contains the value of the last detail record for that group. If you use the Report
Variable in the Group Header band, it contains the value returned by the Initial value.

Chapter 8: Report Variables 153

Using Report Variables
Now that you’re able to create Report Variables, you’re probably wondering how to
use them. Well, the answer is, “Just the same as any other variable.” You can use the
Report Variable by itself as the expression of a Field object. You can also use the

Report Variable within another Report Variable or complex expression of a Field object.
You can even reference the Report Variable from within UDFs and method calls made by
the report. The sample report shown in Figure 3 uses several different Report Variables.
The report definition is included in the source code available with this book, and is called
Variables3.FRX.

Figure 3. This report uses Report Variables to count the orders per month, to print the
USA Freight column, to count the total orders for the entire report, and to count the
number of months on the report.

154 The Visual FoxPro Report Writer: Pushing it to the Limit and Beyond

Simple Report Variables
The report shown in Figure 3 contains a few simple Report Variables to count the number of
orders per month and the total number of orders for the entire report. I started by creating a
Report Variable called nCountMonth that has a Value to store of 1, an Initial value of 0, and
the Count option selected. I set the Reset at value to my Data Grouping so it resets the count
for each different month. I then added a Field object to the report and used nCountMonth as
the expression as seen in the Count column.

Next, I wanted to count the total number of orders of the entire report. I did this by adding
another Report Variable called nCountAll, which is similar to nCountMonth. The only
difference is that I set it to reset at End of Report. I then used the nCountAll variable in the
expression of a Field object in the Report Summary band (along with some text and another
variable, which I’ll describe in a moment).

Conditional Report Variables
Have you ever needed to create a column that only includes certain records and has a summary
calculation based on those records (as I did with the USA Freight column shown in Figure 3)?
At first, you might think, “This is easy. I’ll use the Print When expression.” But you’d only be
half right. Why? The reason is that the Print When expression only controls when the object
prints. It does not have anything to do with whether or not the record participates in the
calculation. Each and every record processed by the Report Writer causes the Report Variables
to be evaluated, including calculations, regardless of whether or not those Report Variables
happen to be used by Field objects with a Print When expression.

So now what? Well, to create the USA Freight column, start by creating a Report Variable
called nUSAFreight. For the Value to store expression enter IIF(ship_to_country = ‘USA’,
freight, 0). For the Calculation option, select Nothing. For each record processed, this variable
contains zero if it’s not USA; otherwise, it contains the freight amount.

Now that you have a Report Variable that only contains a freight amount if the order is
for the USA, add a Field object to the Detail band of the report and enter nUSAFreight as
the expression.

To add a little more finesse to the report, you can also enter ship_to_country = ‘USA’ as
the Print When expression of this object so it suppresses all non-USA orders. This is better
than selecting the “Blank if zero” option because it helps the user distinguish between USA
orders that don’t have any freight vs. non-USA orders.

To add the subtotals and totals for this USA Freight column, copy the Field object from
the Detail band into the Group Footer and Summary bands. You could also add a new Field
object manually, but hey, why do more work than necessary! Once you have Field objects in
the Group Footer and Summary bands with nUSAFreight as the expression, edit them to set
the Calculation option to SUM and the Reset at option to the Data Group and End of Report,
respectively. That’s it. Nothing more is needed. Since you already told the Report Variable to
include the freight amount only if the record is for USA, you don’t need to do anything more
to the SUM. It’s already taken care of.

Counting Data Groups
The final line of the report shown in Figure 3 prints the total number of orders and it prints the
total number of different months encountered. The total number of orders is easy and I just

Chapter 8: Report Variables 155

explained how to do it with a Report Variable using the Count option. So how did I count the
total number of months encountered? This takes a little bit of ingenuity, but once you know
the secret, it’s easy!

The first step is to create a Report Variable (I called mine nTotalMonths). Set the Value
to store to 0, the Initial value to 0, the Calculate option to Sum, and the Reset at option to End
of Report.

Right about now you’re saying, “That’s stupid. I have a Report Variable that sums
nothing. How is that going to work?” Bear with me and it will all make sense. Earlier, I
mentioned that Report Variables are public variables. Here’s where you can take advantage
of this and manipulate the variable yourself with the _VFP.SetVar() function. Just enter the
following as the On Exit expression of the Data Group Footer.

_VFP.SetVar("nTotalMonths", nTotalMonths + 1)

That’s it! Whenever the VFP Report Writer encounters a new value for the Data Group, it
executes this line of code, which increases the nTotalMonths Report Variable by 1. And
remember that you defined the Report Variable as SUM with a Value to store of zero. This
means that as each record is processed, the Report Writer does just what you told it to do—it
adds zero to the Report Variable and doesn’t reset it until the end of the report. Therefore, it
maintains your manipulations to the Report Variable without making any of its own.

So, you haven’t made the leap to Visual FoxPro and you have no idea
what I mean when I say “On Exit expression.” Well, once again, FoxPro
provides several different ways to do the same thing, so you’re not out
of luck. Create the following UDF and then add a Field object to the

Group Footer band of the report. Enter IncrMonths() as the expression for the
Field object. Problem solved!

FUNCTION IncrMonths
nTotalMonths = nTotalMonths + 1
RETURN ""

Note: I consciously put the code to increment the counter in the Group
Footer band and not the Group Header band. The reason is that the Data
Group can be defined to repeat the Group Header on each page. If this

were the case, the variable would get incremented each time the Group Header
printed, which may be more than once for each different month.

Understanding the process
To fully understand Report Variables you need to understand exactly when the Report
Variable is evaluated, when it’s reset, and how it relates to other Report Variables. Otherwise,
you may struggle with trying to get them to work the way you want.

156 The Visual FoxPro Report Writer: Pushing it to the Limit and Beyond

Order of Report Variables
When multiple Report Variables are defined on a report, they’re processed in the order they
appear in the Variables list box. This is important if one Report Variable references another
Report Variable. You can use the Mover button to the left of each item in the list box to
reposition the Report Variables.

Evaluating a Report Variable
Report Variables are evaluated by the VFP Report Writer just prior to the current record
being printed in the Detail band. The sample report shown in Figure 4 demonstrates
exactly when a Report Variable is processed. The first column shows which band is

printed. The second column shows the value of a Report Variable (defined as Count). The
third column shows the current record number. This report, called Variable1.FRX, is included
in the source code available with this book.

Figure 4. This sample report demonstrates when Report Variables are evaluated.

Notice the Report Variable and the RECNO() value don’t always match. This is the part
that can bite you if you’re not expecting it. In Page Header and Group Header bands, the

Chapter 8: Report Variables 157

RECNO() reflects the record that is about to be printed next because the record pointer has
already been moved. However, the Report Variable hasn’t been processed yet, so it still
reflects the value from the previously printed record.

Resetting a Report Variable
You already know that when you define a Report Variable, you tell it what the Reset
point is. In other words, you tell it when to reset to its Initial value. But exactly when
the variable is reset is important, especially when compared to when the Report

Variable is evaluated. For example, see the sample report shown in Figure 5, which has a
Report Variable defined as Count and Reset at Data Group. This report, called Variable2.FRX,
is included in the source code available with this book.

Figure 5. This sample report demonstrates when Report Variables are reset.

You should notice that although the Report Variable is reset to zero after it finishes the
Data Group, it doesn’t get evaluated again until the next Detail band is processed. This means
that if you reference the Report Variable in the Page Header or Group Header band, the value

158 The Visual FoxPro Report Writer: Pushing it to the Limit and Beyond

it contains is the Initial value. So even though the record pointer is on the next record, the
Report Variable hasn’t been processed yet.

Mission impossible
As I mentioned at the beginning of this chapter, it’s impossible to create an application without
using variables, and reports are no different. There are many different situations that warrant
the use of Report Variables. Understanding exactly how the Visual FoxPro Report Writer
processes these variables helps you write the reports as easily as possible.

