
Chapter 6: Improved Data Access 111

Chapter 6
Improved Data Access

There are several ways you can access non-VFP data (such as SQL Server or Oracle) in
VFP applications: remote views, SQL Pass-Through, ADO, and XML. VFP 8 introduces an
exciting new technology called CursorAdapter that makes accessing remote data much
easier than it was in earlier versions.

More and more VFP developers are storing their data in something other than VFP tables,
such as SQL Server or Oracle. There are a lot of reasons for this, including fragility of VFP
tables (both perceived and actual), security, database size, and corporate standards. Microsoft
has made access to non-VFP data easier with every release, and has even been encouraging it
with the inclusion of MSDE (Microsoft Data Engine, a free, stripped-down version of SQL
Server) on the VFP CD, starting with version 7.

However, accessing a back-end database has never been quite as easy as using VFP
tables. In addition, there are a variety of mechanisms you can use to do this:

• Remote views, which are based on ODBC connections.

• SQL Pass-Through (SPT) functions, such as SQLCONNECT(), SQLEXEC(), and
SQLDISCONNECT(), which are also based on ODBC connections.

• ActiveX Data Objects (ADO), which provide an object-oriented front end to OLE DB
providers for database engines.

• XML, which is a lightweight, platform-independent, data transport mechanism.

If you’ve spent any time working with these mechanisms, one of the things you’ve likely
noticed is no two are alike. That means you have a new learning curve with each one, and
converting an existing application from one mechanism to another is a non-trivial task.

To help with this problem, Microsoft added a new base class in VFP 8: CursorAdapter.
CursorAdapter is one of the biggest new features in VFP 8 because:

• It makes it easier to use ODBC, ADO, or XML, even if you’re not very familiar with
these technologies.

• It provides a consistent interface to remote data regardless of the access mechanism
you choose.

• It makes it easier to switch from one access mechanism to another.

Here’s an example of the last point. Suppose you have an application that uses ODBC
with CursorAdapters to access SQL Server data, and you want to change to use ADO instead.
All you need to do is change the DataSourceType of the CursorAdapters, change the
connection to the back-end database, and you’re done. The rest of the components in the

112 What’s New in Visual FoxPro 8.0

application neither know nor care about this; they still see the same cursor regardless of the
mechanism used to access the data.

One thing to keep in mind is CursorAdapter is well-named; it acts as an adapter between a
source of data and a VFP cursor. So, CursorAdapter creates and manages a VFP cursor, but
your forms, reports, and code still operate on the cursor to display and update data.

CursorAdapter PEMs
Let’s start examining CursorAdapters by looking at their properties, events, and methods
(PEMs).

DataSourceType
This property is very important because it determines the overall behavior of the class and
what kinds of values to put into some of the other properties. DataSourceType indicates the
mechanism you’re using to access the data. The valid choices are “Native” (which indicates
you’re using native FoxPro tables), “ODBC”, “ADO”, or “XML”.

DataSource
This is the means to access the data. VFP ignores this property when DataSourceType is set to
“Native” or “XML”. For ODBC, set DataSource to a valid ODBC connection handle (note
you have to manage the connection yourself). In the case of ADO, DataSource must be an
ADO Recordset with its ActiveConnection property set to an open ADO Connection object
(again, you have to manage this yourself).

Alias
As with normal Cursor objects, this property contains the alias of the cursor associated with
the CursorAdapter.

UseDEDataSource
This property determines whether the CursorAdapter uses the DataEnvironment’s
DataSourceType and DataSource properties. If it is set to True (the default is False), you can
leave the DataSourceType and DataSource properties alone because the CursorAdapter will
use the DataEnvironment’s properties instead (VFP 8 adds DataSourceType and DataSource
to the DataEnvironment class as well). For example, if you want all the CursorAdapters in a
DataEnvironment to use the same ODBC connection, you’d set this to True and use the
DataSourceType and DataSource properties in the DataEnvironment to specify the ODBC
connection.

SelectCmd
This is the command used to retrieve the data. In the case of all DataSourceTypes except
XML, this is typically a SQL SELECT command (such as SELECT * FROM CUSTOMERS)
or a stored procedure (for example, EXEC GetCustomersByID 'ALFKI'). In the case of XML,
this can either be a valid XML string or an expression (such as a function or method) that
returns a valid XML string. In either case, VFP uses an internal XMLTOCURSOR() call to
convert the XML to a VFP cursor.

Chapter 6: Improved Data Access 113

CursorSchema
This property holds the structure of the cursor in the same format you’d use in a CREATE
CURSOR command (everything between the parentheses in such a command). Here’s an
example: CUST_ID C(6), COMPANY C(30), CONTACT C(30), CITY C(25). Although it’s
possible to leave this blank and tell the CursorAdapter to determine the structure when it
creates the cursor, it’s better to fill in CursorSchema. For one thing, if CursorSchema is blank
or incorrect, you’ll either get errors when you open the DataEnvironment of a form or you
won’t be able to drag and drop fields from the CursorAdapter to the form to create controls.
Another reason is this allows you to specify exactly what the structure of the cursor should be.
For example, if you want a DateTime field from SQL Server to be converted to a Date field in
the VFP cursor, specify “D” for the data type for that field in CursorSchema.

Since VFP has a 255-character limit for values entered into the Property Window, you
may have to specify the value for this property in code. Fortunately, the CursorAdapter
Builder that comes with VFP (see “Builders” below) can automatically do this for you.

AllowDelete, AllowInsert, AllowUpdate, and SendUpdates
These properties, which default to True, determine whether deletes, inserts, and updates can be
done and whether changes are sent to the data source.

KeyFieldList, Tables, UpdatableFieldList, and UpdateNameList
These properties serve the same purpose as the identically-named CURSORSETPROP()
properties for views. They are required if you want VFP to automatically update the data
source with changes made in the cursor. KeyFieldList is a comma-delimited list of fields
(without aliases) that make up the primary key for the cursor. Tables is a comma-delimited list
of tables the cursor is based on. UpdatableFieldList is a comma-delimited list of fields
(without aliases) that can be updated. UpdateNameList is a comma-delimited list that matches
field names in the cursor to field names in the table. The format for UpdateNameList is as
follows: CURSORFIELDNAME1 TABLE.FIELDNAME1, CURSORFIELDNAME2
TABLE.FIELDNAME2, ... Note that even if UpdatableFieldList doesn’t contain the name of
the primary key of the table (because you don’t want that field updated), the primary key must
still be included in UpdateNameList or updates won’t work.

*Cmd, *CmdDataSource, *CmdDataSourceType
If you want to specifically control how VFP deletes, inserts, or updates records in the data
source, you can assign the appropriate values to these sets of properties (replace the * above
with Delete, Insert, or Update). For example, if you want to use a stored procedure to delete
records, set DeleteCmd to something like “EXEC DeleteCustomer CustomerID”, and set
DeleteCmdDataSource and DeleteCmdDataSourceType to the proper values for the
connection.

ConversionFunc
This property specifies conversion functions to be applied to fields when automatic updating is
performed. The format for ConversionFunc is as follows: CURSORFIELDNAME1
FUNCTION, CURSORFIELDNAME2 FUNCTION, … (Do not include parentheses at the

114 What’s New in Visual FoxPro 8.0

end of the function name.) Each function must accept the field name as its only parameter. The
function can be a built-in VFP function or a user-defined function (UDF).

For example, if you use the SQL Server VarChar data type, which doesn’t have trailing
spaces, for customer name and city fields, you’ll want to trim the fields in the VFP cursor
before sending them to SQL Server. To do that, specify “COMPANY TRIM, CITY TRIM”
for ConversionFunc.

Other properties
CursorAdapter has several properties identical to the equivalent CURSORSETPROP()
properties: AllowSimultaneousFetch, BatchUpdateCount, CompareMemo, FetchAsNeeded,
FetchMemo, FetchSize, MaxRecords, Prepared, UpdateType, UseMemoSize, and WhereType.
There are a few other properties as well:

• BufferModeOverride determines how the cursor is buffered (row or table).

• UpdateGram contains the changes made in the cursor in updategram format when the
*DataSourceType properties are set to “XML”. This property isn’t filled in as
changes are made, but rather when an update is about to be performed (such as when
TABLEUPDATE() has been executed).

• The Flags property contains settings to use when VFP creates the updategram; it has
the same values as the Flags parameter in the XMLUPDATEGRAM() function.

• UpdateGramSchemaLocation contains the name and location of a mapping schema if
you want to use one; as with Flags, this property works like the equivalent parameter
in XMLUPDATEGRAM().

• BreakOnError determines what VFP does when an error occurs in VFP code in any
of the CursorAdapter events. If this property is True (the default is False), VFP
displays an error message immediately when an error occurs; otherwise, the normal
error handling mechanism in place is used.

CursorFill(lUseCursorSchema, lNoData, nOptions, oSource)
This method creates the cursor and fills it with data from the data source (although you can
pass True for the lNoData parameter to create an empty cursor). Pass True for the first
parameter to use the schema defined in CursorSchema or False to have VFP create an
appropriate structure from the data source. We’ll discuss the use of the other two parameters
later in this chapter.

MULTILOCKS must be set on or this method will fail. If CursorFill fails for any reason,
it returns False rather than raising an error; use AERROR() to determine what went wrong
(although be prepared for some digging, since the error messages you get often aren’t specific
enough to tell you exactly what the problem is).

CursorRefresh()
This method is similar to the REQUERY() function: it refreshes the cursor’s contents.

Chapter 6: Improved Data Access 115

CursorAttach(cAlias, lInheritCursorProperties) and CursorDetach()
These methods allow you to attach an existing cursor to a CursorAdapter object or to free the
cursor attached to a CursorAdapter. Attaching a cursor means it will be under the control of
the CursorAdapter—updates are handled by the CursorAdapter, the cursor is closed when the
CursorAdapter is destroyed, and so forth. If you want a cursor to exist after its CursorAdapter
is destroyed or no longer want it to be under the control of the CursorAdapter, use
CursorDetach.

Before*() and After*()
CursorAdapter has many before and after “hook” events that allow you to customize the
behavior of the CursorAdapter. In the case of the Before events, you can return False to
prevent the action that triggered it from occurring (this is similar to database events). Table 1
shows a list of these events.

Table 1. CursorAdapter has several Before and After events that allow you to hook in
additional behaviors when various operations are done to the cursor.

Event When Fired
BeforeCursorAttach,
AfterCursorAttach

Before and after the CursorAttach method, respectively.

BeforeCursorClose,
AfterCursorClose

Before and after the cursor is closed, respectively.

BeforeCursorDetach,
AfterCursorDetach

Before and after the CursorDetach method, respectively.

BeforeCursorFill,
AfterCursorFill

Before and after the CursorFill method, respectively.

BeforeCursorRefresh,
AfterCursorRefresh

Before and after the CursorRefresh method, respectively.

BeforeCursorUpdate,
AfterCursorUpdate

Before and after TABLEUPDATE(), respectively; these methods do not
fire if the back end is updated implicitly, such as by moving the record
pointer when row buffering is used. These events are wrapped around
the appropriate Before/AfterDelete, Insert, or Update events, depending
on what is happening to the data. For example, for an update operation
performed with TABLEUPDATE(), the order of events is
BeforeCursorUpdate, BeforeUpdate and AfterUpdate for each record
being updated, and finally AfterCursorUpdate.

BeforeDelete, AfterDelete Before and after a delete operation is sent to the database (even when
the delete is done implicitly), respectively. Fires once per record; doesn’t
fire if BatchUpdateCount is greater than 1.

BeforeInsert, AfterInsert Before and after an insert operation is sent to the database (even when
the insert is done implicitly), respectively. Fires once per record; doesn’t
fire if BatchUpdateCount is greater than 1.

BeforeUpdate, AfterUpdate Before and after an update operation is sent to the database (even when
the update is done implicitly), respectively. Fires once per record; doesn’t
fire if BatchUpdateCount is greater than 1.

Some of these events are very interesting and useful. For example, in AfterCursorFill, you

can create indexes for the cursor so they’re available for SEEK statements or creating
relationships between cursors. The before and after events for delete, insert, and update
operations (for example, BeforeInsert) receive parameters describing what is happening to the

116 What’s New in Visual FoxPro 8.0

data, including field and record state (the same value you’d get from GETFLDSTATE(-1)),
whether changes are being forced or not, the SQL UPDATE or INSERT command being sent
to the database engine (very useful when trying to debug problems), and, if updates are done
by deleting the old records and inserting new ones (UpdateType = 2), the SQL DELETE
command sent to the database. You can change the commands sent to the database in the
Before events if necessary, giving you complete control over how updates are done.

Putting CursorAdapter to work
Here’s an example that gets certain fields for Brazilian customers from the Customers table in
the Northwind database that comes with SQL Server. The cursor is updateable, so if you make
changes in the cursor, close it, and then run the program again, you’ll see your changes were
saved to the back end.

local loCursor as CursorAdapter, ;
 laErrors[1]
set multilocks on
loCursor = createobject('CursorAdapter')
with loCursor
 .Alias = 'Customers'
 .DataSourceType = 'ODBC'
 .DataSource = sqlstringconnect('driver=SQL Server;' + ;
 'server=(local);database=Northwind;uid=sa;pwd=;trusted_connection=no')
 .SelectCmd = "select CUSTOMERID, COMPANYNAME, CONTACTNAME " + ;
 "from CUSTOMERS where COUNTRY = 'Brazil'"
 .KeyFieldList = 'CUSTOMERID'
 .Tables = 'CUSTOMERS'
 .UpdatableFieldList = 'CUSTOMERID, COMPANYNAME, CONTACTNAME'
 .UpdateNameList = 'CUSTOMERID CUSTOMERS.CUSTOMERID, ' + ;
 'COMPANYNAME CUSTOMERS.COMPANYNAME, CONTACTNAME CUSTOMERS.CONTACTNAME'
 if .CursorFill()
 browse
 else
 aerror(laErrors)
 messagebox(laErrors[2])
 endif
endwith

The Developer Download files for this chapter, available at
www.hentzenwerke.com, include this code in
CursorAdapterExample.PRG. You may have to change the setting for the
DataSource property to use the appropriate connection information, such
as user name and password.

DataEnvironment, Form, and other changes
To support the new CursorAdapter class, several changes have been made to the
DataEnvironment and Form classes and their designers.

First, as mentioned earlier, the DataEnvironment class now has DataSource and
DataSourceType properties. It doesn’t use these properties itself but they’re used by any
CursorAdapter member with UseDEDataSource set to True. Second, you can now create

Chapter 6: Improved Data Access 117

DataEnvironment subclasses visually using the Class Designer. You can even save the
DataEnvironment of a form as a class by choosing Save As Class from the File menu when
you’re in the Form Designer and selecting the DataEnvironment option.

As for forms, you can now specify a DataEnvironment subclass to use by setting the new
DEClass and DEClassLibrary properties. If you do this, anything you’ve done with the
existing DataEnvironment (cursors, code, etc.) will be lost, but at least you’re warned first.

CURSORGETPROP('SourceType') returns a new range of values: if the cursor was
created with CursorFill, the value is 100 + the old value (for example, 102 for remote data). If
an existing cursor was attached to the CursorAdapter with CursorAttach, the value is 200 + the
old value. If the data source is an ADO Recordset, the value is 104 (CursorFill) or 204
(CursorAttach). You can get a reference to the ADO Recordset object associated with a cursor
using CURSORGETPROP('ADORecordset').

Builders
VFP 8 includes new DataEnvironment and CursorAdapter builders that make it easier to work
with these classes.

The DataEnvironment Builder is brought up in the usual way; by right-clicking on the
DataEnvironment of a form or on a DataEnvironment subclass in the Class Designer and
choosing Builder. The “Data Source” page of the DataEnvironment Builder (see Figure 1) is
where you set data source information. Choose the desired data source type and where the data
source comes from. If you choose “Use existing connection handle” (ODBC) or “Use existing
ADO Recordset” (ADO), specify an expression containing the data source (such as
“goConnectionMgr.nHandle”). You can also choose to use one of the DSNs on your system or
a connection string. The Build button, which is only enabled if you choose “Use connection
string” for ADO, displays the Data Link Properties dialog, which you can use to build the
connection string visually. If you select either “Use DSN” or “Use connection string”, the
builder generates code in the BeforeOpenTables method of the DataEnvironment to create the
desired connection. If you choose “Native”, you can select a VFP database container as a data
source; in that case, the generated code ensures the database is open (you can also use free
tables as the data source).

118 What’s New in Visual FoxPro 8.0

Figure 1. The Data Source page of the DataEnvironment Builder allows you to
specify what type of data source to use and how to connect to it.

The “Cursors” page, shown in Figure 2, allows you to maintain the CursorAdapter
members of the DataEnvironment. (Cursor objects don’t show up in the builder, nor can they
be added.) The Add button allows you to add a CursorAdapter subclass to the
DataEnvironment, while New creates a new base class CursorAdapter; in either case, the
CursorAdapter Builder is automatically launched so you can work on the new object. Remove
deletes the selected CursorAdapter and Builder invokes the CursorAdapter Builder for the
selected CursorAdapter. You can change the name of the CursorAdapter object, but you’ll
need the CursorAdapter Builder to set any other properties.

Chapter 6: Improved Data Access 119

Figure 2. In the Cursors page, you can add or remove CursorAdapter objects or
launch the CursorAdapter Builder for the selected one.

The CursorAdapter Builder can be invoked by choosing Builder from the shortcut menu
for a CursorAdapter or from the DataEnvironment Builder. The “Properties” page (see Figure
3) shows the class and name of the object (Name can only be changed if the builder is brought
up from a DataEnvironment, since it’s read-only for a CursorAdapter subclass), the alias of the
cursor it’ll create, whether the DataEnvironment’s data source should be used or not, and if
not, the connection information to use. As with the DataEnvironment Builder, the
CursorAdapter Builder generates code to create the desired connection (in the CursorFill
method in this case) if you select either “Use DSN” or “Use connection string”. You can also
specify a connection for the builder to use temporarily; in that case, the builder doesn’t
generate code for the connection.

120 What’s New in Visual FoxPro 8.0

Figure 3. Use the Properties page of the CursorAdapter Builder to specify several
settings for a CursorAdapter, including how it’s connected to the database.

The “Data Access” page, shown in Figure 4, allows you to specify the SelectCmd,
CursorSchema, and other properties. If you specified connection information, you can click on
the Build button for SelectCmd to display the Select Command Builder, which makes it easy
to create the SelectCmd. The schema must be less than 255 characters or you’ll get a warning
message when you click on the OK button.

Chapter 6: Improved Data Access 121

Figure 4. The Data Access page makes it easy to fill in the SelectCmd and
CursorSchema properties, as well as specifying how data access should work.

The Select Command Builder, illustrated in Figure 5, makes short work of building a
simple SELECT statement. Choose the desired table from the table drop-down list, and then
move the appropriate fields to the selected side. In the case of a native data source, you can
add tables to the Table combo box (for example, if you want to use free tables). When you
choose OK, the SelectCmd is filled with the appropriate SQL SELECT statement.

122 What’s New in Visual FoxPro 8.0

Figure 5. The Select Command Builder provides a visual tool for creating a SQL
SELECT statement.

Click on the Build button for the CursorSchema to have this property filled in for you
automatically. In order for this to work, the builder actually creates a new CursorAdapter
object, sets the properties appropriately, and calls CursorFill to create the cursor. If you don’t
have a live connection to the data source, or CursorFill fails for some reason (such as an
invalid SelectCmd), this obviously won’t work.

The Auto-Update page is shown in Figure 6. Use this page to set the properties necessary
for VFP to automatically generate update statements for the data source. The Tables property
is automatically filled in from the tables specified in SelectCmd, and the fields grid is filled in
from the fields in CursorSchema. As in the View Designer, you select the key fields and which
fields are updatable by checking the appropriate column in the grid. You can also set other
properties, such as functions to convert the data in certain fields of the cursor before sending it
to the data source.

Chapter 6: Improved Data Access 123

Figure 6. Use the settings in the Auto-Update page to specify how VFP should
generate update statements for the cursor.

If you want more control over how updates are done, click on the Advanced button to
bring up the Advanced Update Properties dialog, shown in Figure 7. The Update, Insert, and
Delete pages have a nearly identical appearance. They allow you to specify values for the sets
of Update, Delete, and Insert properties. This is especially important for XML, because VFP
can’t automatically generate update statements.

124 What’s New in Visual FoxPro 8.0

Figure 7. The Advanced Update Properties dialog allows you to control how updates
are sent to the database.

Data source specifics
The DataSourceType property indicates what mechanism the CursorAdapter uses to talk to the
database engine: native (for VFP data), ODBC, ADO, or XML. Each of these types has its
own set of rules about how it works, so let’s look at the specific details for each one.

Chapter 6: Improved Data Access 125

Using native data
Even though it’s clear CursorAdapter was intended to standardize and simplify access to non-
VFP data, you can use it as a substitute for Cursor by setting DataSourceType to “Native”.
Why would you do this? Mostly as a look toward the future when your application might be
upsized; by simply changing the DataSourceType to one of the other choices (and likely
changing a few other properties such as setting connection information), you can easily switch
to another DBMS such as SQL Server.

When DataSourceType is set to “Native”, VFP ignores DataSource. SelectCmd must be a
SQL SELECT statement, not a USE command or expression, which means you’re always
working with the equivalent of a local view rather than with the table directly. You’re
responsible for ensuring that VFP can find any tables referenced in the SELECT statement, so
if the tables aren’t in the current directory, you either need to set a path or open the database
the tables belong to. As usual, if you want the cursor to be updateable, be sure to set the update
properties (KeyFieldList, Tables, UpdatableFieldList, and UpdateNameList).

The following code creates an updateable cursor from the Customer table in the TestData
VFP sample database:

local loCursor as CursorAdapter, ;
 laErrors[1]
set multilocks on
open database (_samples + 'data\testdata')
loCursor = createobject('CursorAdapter')
with loCursor
 .Alias = 'customercursor'
 .DataSourceType = 'Native'
 .SelectCmd = "select CUST_ID, COMPANY, CONTACT from CUSTOMER " + ;
 "where COUNTRY = 'Brazil'"
 .KeyFieldList = 'CUST_ID'
 .Tables = 'CUSTOMER'
 .UpdatableFieldList = 'CUST_ID, COMPANY, CONTACT'
 .UpdateNameList = 'CUST_ID CUSTOMER.CUST_ID, ' + ;
 'COMPANY CUSTOMER.COMPANY, CONTACT CUSTOMER.CONTACT'
 if .CursorFill()
 browse
 tableupdate(1)
 else
 aerror(laErrors)
 messagebox(laErrors[2])
 endif
endwith
close databases all

The Developer Download files at www.hentzenwerke.com include this
code in NativeExample.PRG.

Using ODBC
ODBC is actually the most straightforward of the four settings of DataSourceType. You set
DataSource to an open ODBC connection handle, set the usual properties, and call CursorFill
to retrieve the data. If you fill in KeyFieldList, Tables, UpdatableFieldList, and
UpdateNameList, VFP will automatically generate the appropriate UPDATE, INSERT, and

126 What’s New in Visual FoxPro 8.0

DELETE statements to update the back end with any changes. If you want to use a
stored procedure instead, set the *Cmd, *CmdDataSource, and *CmdDataSourceType
properties appropriately.

Here’s an example that calls the CustOrderHist stored procedure in the Northwind
database to get total units sold by product for a specific customer:

local loCursor as CursorAdapter, ;
 laErrors[1]
set multilocks on
loCursor = createobject('CursorAdapter')
with loCursor
 .Alias = 'CustomerHistory'
 .DataSourceType = 'ODBC'
 .DataSource = sqlstringconnect('driver=SQL Server;server=(local);' + ;
 'database=Northwind;uid=sa;pwd=;trusted_connection=no')
 .SelectCmd = "exec CustOrderHist 'ALFKI'"
 if .CursorFill()
 browse
 else
 aerror(laErrors)
 messagebox(laErrors[2])
 endif
endwith

The Developer Download files at www.hentzenwerke.com include this
code in ODBCExample.PRG.

Using ADO
Using ADO as the data access mechanism with CursorAdapter has a few more issues than
using ODBC:

• DataSource must be set to an ADO Recordset with its ActiveConnection property set
to an open ADO Connection object.

• If you already have an open ADO Recordset (such as one returned by a middle tier
object in an n-tier application), pass it as the fourth parameter to CursorFill. If you do
this, the DataSource property is ignored. Also, CursorRefresh works a little
differently in this case; you’re responsible for refreshing the parameter values before
calling CursorRefresh. See the Help topic for CursorRefresh for details.

• For updates to work, the ADO Recordset object must support the Bookmark property.
That’s only available with client-side cursors, so you should set the CursorLocation
property of the Recordset to 3.

• If you want to use a parameterized query (which is usually a better choice than
retrieving all records), you have to pass an ADO Command object with its
ActiveConnection property set to an open ADO Connection object as the fourth
parameter to CursorFill. VFP will take care of filling the Parameters collection of the
Command object for you (it parses SelectCmd to find the parameters), but of course
the variables containing the values of the parameters must be in scope.

Chapter 6: Improved Data Access 127

• If you’d rather specify your own delete, insert, or update commands rather than using
automatic update, set the appropriate *CmdDataSourceType property to “ADO”,
*CmdDataSource to an ADO Command object with its ActiveConnection property
set to an open ADO Connection object, and *Cmd to the command to execute.

• Using one CursorAdapter with ADO in a DataEnvironment is straightforward; you
can set UseDEDataSource to True if you wish, and then set the DataEnvironment’s
DataSource and DataSourceType properties as you would with the CursorAdapter.
However, this doesn’t work if there’s more than one CursorAdapter in the
DataEnvironment. The reason is the ADO Recordset referenced by
DataEnvironment.DataSource can only contain a single CursorAdapter’s data; when
you call CursorFill for the second CursorAdapter, you get a “Recordset is already
open” error. So, if your DataEnvironment has more than one CursorAdapter, you
must set UseDEDataSource to False and manage the DataSource and
DataSourceType properties of each CursorAdapter yourself (or perhaps use a
DataEnvironment subclass that manages it for you).

The sample code below shows how to retrieve data using a parameterized query with the
help of an ADO Command object. This example also shows the use of the new structured error
handling features in VFP 8, discussed in more detail in Chapter 12, “Error Handling”. The call
to the ADO Connection Open method is wrapped in a TRY structure to trap the COM error the
method will throw if it fails. Finally, it shows the use of CursorRefresh to refresh the cursor
when the parameter query changes.

local loConn as ADODB.Connection, ;
 loCommand as ADODB.Command, ;
 loException as Exception, ;
 loCursor as CursorAdapter, ;
 lcCountry, ;
 laErrors[1]
set multilocks on
loConn = createobject('ADODB.Connection')
with loConn
 .ConnectionString = 'provider=SQLOLEDB.1;data source=(local);' + ;
 'initial catalog=Northwind;uid=sa;pwd=;trusted_connection=no'
 try
 .Open()
 catch to loException
 messagebox(loException.Message)
 cancel
 endtry
endwith
loCommand = createobject('ADODB.Command')
loCursor = createobject('CursorAdapter')
with loCursor
 .Alias = 'Customers'
 .DataSourceType = 'ADO'
 .DataSource = createobject('ADODB.Recordset')
 .SelectCmd = 'select * from customers where country=?lcCountry'
 lcCountry = 'Brazil'
 .DataSource.ActiveConnection = loConn
 loCommand.ActiveConnection = loConn
 if .CursorFill(.F., .F., 0, loCommand)

128 What’s New in Visual FoxPro 8.0

 browse
 lcCountry = 'Canada'
 .CursorRefresh()
 browse
 else
 aerror(laErrors)
 messagebox(laErrors[2])
 endif
endwith

The Developer Download files at www.hentzenwerke.com include this
code in ADOExample.PRG.

Using XML
There are some issues to be aware of when using XML with CursorAdapters. They are:

• The DataSource property is ignored.

• The SelectCmd property must be set to a source of XML. For example, you can use
an expression that returns the XML for the cursor, such as a UDF or object method
name. You can also specify the name of an XML document; in that case, pass 512 as
the third parameter to CursorFill (which tells it the XML is coming from a file rather
than a string).

• Changes made to the cursor are converted to an updategram, which is XML that
contains before and after values for changed fields and records, and placed in the
UpdateGram property when the update is required.

• In order to write changes back to the data source, UpdateCmdDataSourceType must
be set to “XML” and UpdateCmd must be set to an expression (again, likely a UDF
or object method) that handles the update. You’ll probably want to pass
“This.UpdateGram” to the UDF so it can send the changes to the data source. If
BufferModeOverride is set to 5-optimistic table buffering, the function specified in
UpdateCmd will be called once for each modified record and UpdateGram will only
contain changes for record currently being updated.

The XML source for the cursor could come from a variety of places. For example, you
could call a UDF that converts a VFP cursor into XML using CURSORTOXML() and returns
the results:

use CUSTOMERS
cursortoxml('customers', 'lcXML', 1, 8, 0, '1')
return lcXML

The UDF could call a Web Service that returns a result set as XML. Here’s an example
IntelliSense generated from a Web Service. (The details aren’t important; it just shows an
example of a Web Service. See Chapter 10, “COM and Web Services Enhancements”, for a
discussion of Web Services.)

Chapter 6: Improved Data Access 129

local loWS as dataserver web service
loWS = NEWOBJECT("Wsclient",HOME()+"ffc_webservices.vcx")
loWS.cWSName = "dataserver web service"
loWS = loWS.SetupClient("http://localhost/SQDataServer/dataserver.WSDL", ;
 "dataserver", "dataserverSoapPort")
lcXML = loWS.GetCustomers()
return lcXML

It could use SQLXML to execute a SQL Server query stored in a template file on a Web
Server (for more information on SQLXML, go to http://msdn.microsoft.com and search for
SQLXML). The following code uses an MSXML2.XMLHTTP object to get all records from
the Northwind Customers table via HTTP; this is explained in more detail later.

local loXML as MSXML2.XMLHTTP
loXML = createobject('MSXML2.XMLHTTP')
loXML.open('POST', 'http://localhost/northwind/template/' + ;
 'getallcustomers.xml', .F.)
loXML.setRequestHeader('Content-type', 'text/xml')
loXML.send()
return loXML.responseText

Handling updates is more complicated. The data source must either be capable of
accepting and consuming an updategram (as is the case with SQL Server 2000) or you have to
figure out the changes yourself and issue a series of SQL statements (UPDATE, INSERT, and
DELETE) to perform the updates.

Here’s an example that uses a CursorAdapter with an XML data source. Notice both
SelectCmd and UpdateCmd call UDFs. In the case of SelectCmd, the name of a SQL Server
XML template and the customer ID to retrieve is passed to a UDF called GetNWXML, which
we’ll look at in a moment. For UpdateCmd, VFP passes the UpdateGram property to
SendNWXML, which we’ll also look at later.

The Developer Download files at www.hentzenwerke.com include all the
code necessary for this example: XMLExample.PRG, GetNWXML.PRG,
SendNWXML.PRG, and CustomersByID.XML.

local loCustomers as CursorAdapter, ;
 laErrors[1]
set multilocks on
loCustomers = createobject('CursorAdapter')
with loCustomers
 .Alias = 'Customers'
 .CursorSchema = 'CUSTOMERID C(5), COMPANYNAME C(40), ' + ;
 'CONTACTNAME C(30), CONTACTTITLE C(30), ADDRESS C(60), ' + ;
 'CITY C(15), REGION C(15), POSTALCODE C(10), COUNTRY C(15), ' + ;
 'PHONE C(24), FAX C(24)'
 .DataSourceType = 'XML'
 .KeyFieldList = 'CUSTOMERID'
 .SelectCmd = 'GetNWXML([customersbyid.xml?customerid=ALFKI])'
 .Tables = 'CUSTOMERS'
 .UpdatableFieldList = 'CUSTOMERID, COMPANYNAME, CONTACTNAME, ' + ;

130 What’s New in Visual FoxPro 8.0

 'CONTACTTITLE, ADDRESS, CITY, REGION, POSTALCODE, COUNTRY, PHONE, FAX'
 .UpdateCmdDataSourceType = 'XML'
 .UpdateCmd = 'SendNWXML(This.UpdateGram)'
 .UpdateNameList = 'CUSTOMERID CUSTOMERS.CUSTOMERID, ' + ;
 'COMPANYNAME CUSTOMERS.COMPANYNAME, ' + ;
 'CONTACTNAME CUSTOMERS.CONTACTNAME, ' + ;
 'CONTACTTITLE CUSTOMERS.CONTACTTITLE, ' + ;
 'ADDRESS CUSTOMERS.ADDRESS, ' + ;
 'CITY CUSTOMERS.CITY, ' + ;
 'REGION CUSTOMERS.REGION, ' + ;
 'POSTALCODE CUSTOMERS.POSTALCODE, ' + ;
 'COUNTRY CUSTOMERS.COUNTRY, ' + ;
 'PHONE CUSTOMERS.PHONE, ' + ;
 'FAX CUSTOMERS.FAX'
 if .CursorFill(.T.)
 browse
 tableupdate(.T.)
 else
 aerror(laErrors)
 messagebox(laErrors[2])
 endif
endwith
close tables

The XML template this code references, CustomersByID.XML, looks like the following:

<root xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <sql:header>
 <sql:param name="customerid">
 </sql:param>
 </sql:header>
 <sql:query client-side-xml="0">
 SELECT *
 FROM Customers
 WHERE CustomerID = @customerid
 FOR XML AUTO
 </sql:query>
</root>

Place this file in an IIS virtual directory for the Northwind database (see Appendix 1,
“Setting Up SQL Server 2000 XML Access”, for details on configuring IIS to work with
SQL Server).

Here’s the code for GetNWXML. It uses an MSXML2.XMLHTTP object to transfer
XML via HTTP. The Open method opens a connection to a URL, which in this case specifies
a SQL Server XML template on a Web server. The SetRequestHeader method tells the
XMLHTTP object what type of data is being transferred. The Send method sends the request
to the server and puts the results into the ResponseText property. The name of the template
(and optionally any query parameters) is passed as a parameter to this code.

Chapter 6: Improved Data Access 131

lparameters tcURL
local loXML as MSXML2.XMLHTTP
loXML = createobject('MSXML2.XMLHTTP')
loXML.open('POST', 'http://localhost/northwind/template/' + tcURL, .F.)
loXML.setRequestHeader('Content-type', 'text/xml')
loXML.send()
return loXML.responseText

SendNWXML looks similar, except it expects to be passed an updategram, loads the
updategram into an MSXML2.DOMDocument object, and passes that object to the Web
server, which will in turn pass it via SQLXML to SQL Server for processing.

lparameters tcUpdateGram
local loDOM as MSXML2.DOMDocument, ;
 loXML as MSXML2.XMLHTTP
loDOM = createobject('MSXML2.DOMDocument')
loDOM.async = .F.
loDOM.loadXML(tcUpdateGram)
loXML = createobject('MSXML2.XMLHTTP')
loXML.open('POST', 'http://localhost/northwind/', .F.)
loXML.setRequestHeader('Content-type', 'text/xml')
loXML.send(loDOM)

To see how this works, run XMLExample.prg. You should see a single record (the
ALFKI customer) in a browse window. Change the value in some field, close the window, and
run the PRG again. You should see your change was written to the back end.

Update issue
You have a lot of flexibility when updating the original data source from changes in the cursor
created by CursorAdapter. The easiest thing to do is let VFP handle the updates by setting the
KeyFieldList, Tables, UpdatableFieldList, and UpdateNameList properties. For more control,
set the *Cmd, *DataSource, and *DataSourceType properties (where “*” is “Delete”, “Insert”,
or “Update”). However, there’s an issue you should be aware of; update conflicts don’t work
the same way they do with VFP data.

With UpdateType set to 1 (the default) and automatic updates, VFP sends a SQL
UPDATE command to the data source. The UPDATE command is usually something like the
following (in this case, CUSTOMERID is the key field and the value of the
COMPANYNAME field was changed):

UPDATE CUSTOMERS SET COMPANYNAME=?customer.companyname
 WHERE CUSTOMERID=?OLDVAL('customerid','customer') AND
 COMPANYNAME=?OLDVAL('companyname','customer')

What happens if another user also changed the company name? In that case, the WHERE
clause will fail because no record with the former name of the company can be found.
However, this doesn’t cause an error. As a result, it appears the update succeeded—
TABLEUPDATE() returns True.

This situation may be better or worse if UpdateType is set to 2. In that case, VFP
generates SQL DELETE and INSERT commands similar to the following:

132 What’s New in Visual FoxPro 8.0

DELETE FROM CUSTOMERS WHERE CUSTOMERID=?OLDVAL('customerid','customer') AND
 COMPANYNAME=?OLDVAL('companyname','customer')
INSERT INTO CUSTOMERS (CUSTOMERID, COMPANYNAME, CONTACTNAME, CONTACTTITLE,
 ADDRESS, CITY, REGION, POSTALCODE, COUNTRY, PHONE, FAX) VALUES
 (?customer.customerid, ?customer.companyname, ?customer.contactname,
 ?customer.contacttitle, ?customer.address, ?customer.city, ?customer.region,
 ?customer.postalcode, ?customer.country, ?customer.phone, ?customer.fax)

In the case of a conflict, the DELETE command will fail, but not cause an error. The
INSERT command will fail with a duplicate primary key error if the table has a primary key
(which is good, since TABLEUPDATE() will return False) or will succeed and create a
duplicate record if the table doesn’t have a primary key (which is bad).

One way to handle this is to change the SQL UPDATE and DELETE commands so they
cause an error if they fail. In the case of SQL Server, you can use code like the following in
the BeforeUpdate method of the CursorAdapter to modify the UPDATE and DELETE
commands to raise an error if the process failed:

lcErrorCode = " if @@ROWCOUNT=0 RAISERROR('Update conflict!', 16, 1)"
cUpdateInsertCmd = cUpdateInsertCmd + lcErrorCode
cDeleteCmd = iif(empty(cDeleteCmd), '', cDeleteCmd + lcErrorCode)

Reusable data classes
One thing VFP developers have asked Microsoft to add to VFP for a long time is reusable data
environments. For example, you may have a form and a report with exactly the same data
setup, but you have to manually fill in the DataEnvironment for each one because
DataEnvironments aren’t reusable. Some developers (and almost all frameworks vendors)
made it easier to create reusable DataEnvironments by creating DataEnvironments in code
(they couldn’t be subclassed visually) and using a “loader” object on the form to instantiate the
DataEnvironment subclass. However, this was kind of a kludge and didn’t help with reports.

Now, in VFP 8, we have the ability to create both reusable data classes, which can
provide cursors from any data source to anything that needs them, and reusable
DataEnvironments, which can host the data classes. Unfortunately, you can’t use a
DataEnvironment subclass in a report, but you can add CursorAdapters or CursorAdapter
subclasses to the report’s DataEnvironment to take advantage of reusability there.

Here’s an example. If you want a CursorAdapter that works with the Northwind
Customers table, it makes more sense to create a subclass to do that rather than create separate
instances and fill in the properties every time you need one. Table 2 shows the properties for a
subclass of CursorAdapter called CustomersCursor.

Chapter 6: Improved Data Access 133

Table 2. The properties of the CustomersCursor class provide a CursorAdapter that
knows how to access and update the Northwind Customers table.

Property Value
Alias Customers
CursorSchema CUSTOMERID C(5), COMPANYNAME C(40), CONTACTNAME C(30),

CONTACTTITLE C(30), ADDRESS C(60), CITY C(15), REGION C(15),
POSTALCODE C(10), COUNTRY C(15), PHONE C(24), FAX C(24)

KeyFieldList CUSTOMERID
SelectCmd select * from customers
Tables CUSTOMERS
UpdatableFieldList CUSTOMERID, COMPANYNAME, CONTACTNAME, CONTACTTITLE, ADDRESS,

CITY, REGION, POSTALCODE, COUNTRY, PHONE, FAX
UpdateNameList CUSTOMERID CUSTOMERS.CUSTOMERID, COMPANYNAME

CUSTOMERS.COMPANYNAME, CONTACTNAME CUSTOMERS.CONTACTNAME,
CONTACTTITLE CUSTOMERS.CONTACTTITLE, ADDRESS
CUSTOMERS.ADDRESS, CITY CUSTOMERS.CITY, REGION
CUSTOMERS.REGION, POSTALCODE CUSTOMERS.POSTALCODE, COUNTRY
CUSTOMERS.COUNTRY, PHONE CUSTOMERS.PHONE, FAX CUSTOMERS.FAX

You can use the CursorAdapter Builder to do most of the work, especially
setting the CursorSchema and update properties. The trick is to turn on the
“use connection settings in builder only” option, fill in the connection
information so you have a live connection, fill in the SelectCmd, and use
the builder to build the rest of the properties for you.

Now, anytime you need records from the Northwind Customers table, you simply use the
CustomersCursor class. Of course, we haven’t defined any connection information, but that’s
actually a good thing, because this class shouldn’t have to worry about things like how to get
the data (ODBC, ADO, or XML) or even what database engine to use (there are Northwind
databases for SQL Server, Access, and, new in version 8, VFP). Here’s an example that uses
the CustomersCursor class; notice it just needs to set the connection information in order to
have a fully updateable cursor of Northwind Customers.

loCursor = newobject('CustomersCursor', 'NorthwindDataClasses')
with loCursor
 .DataSourceType = 'ODBC'
 .DataSource = sqlstringconnect('driver=SQL Server;' + ;
 'server=(local);database=Northwind;uid=sa;pwd=;' + ;
 'trusted_connection=no')
 if .CursorFill()
 browse
 else
 aerror(laErrors)
 messagebox(laErrors[2])
 endif
endwith

134 What’s New in Visual FoxPro 8.0

 The Developer Download files at www.hentzenwerke.com include this
code as TestCustomersCursor.PRG, plus NorthwindDataClasses.VCX,
which has the CustomersCursor class definition. Additional sample code
not described here is also provided, including subclasses of
CursorAdapter and DataEnvironment called SFCursorAdapter and
SFDataEnvironment that provide additional functionality and can serve as
the parent classes for specialized subclasses.

One thing to be aware of when you subclass CursorAdapter is the unique order in which
events fire at instantiation. For a CursorAdapter instantiated in code, the Init event fires before
all others, as you’d expect. However, for a CursorAdapter in the DataEnvironment of a form,
here’s the event order:

DataEnvironment.OpenTables
DataEnvironment.BeforeOpenTables
CursorAdapter.AutoOpen
CursorAdapter.BeforeCursorFill
CursorAdapter.CursorFill
CursorAdapter.AfterCursorFill
CursorAdapter.Init
DataEnvironment.Init

Since Init fires after CursorFill, you can’t put code that initializes properties such as
DataSource and DataSourceType into Init—that code would execute too late. Instead, put this
code into BeforeCursorFill or CursorFill.

You can add base class CursorAdapters to the DataEnvironment of a report but you can’t
add CursorAdapter subclasses, at least not visually. The reason is VFP stores only the class
name, not the class library, in the FRX, so when you reopen or run the report, VFP doesn’t
know where the CursorAdapter subclasses are defined. If you want to use CursorAdapter
subclasses, add them programmatically using AddObject or NewObject in the Init of the
DataEnvironment.

Summary
CursorAdapter is one of the biggest and most exciting enhancements in VFP 8 because it
provides a consistent and easy-to-use interface to remote data, makes it easy to switch from
one access mechanism to another, and allows you to create truly reusable data classes.

VFP 8 has a lot of other data-related changes as well. We’ll examine these in detail in the
next two chapters.

Updates and corrections to this chapter can be found on Hentzenwerke’s web site,
www.hentzenwerke.com. Click on “Catalog” and navigate to the page for this book.

