
Issue Date: FoxTalk March 1996

Extend and Adapt Your Classes with BRIDGEs
Steven Black
steveb@stevenblack.com

This is the first of a series of articles on object-oriented design
patterns and how to apply them in Visual FoxPro. The study of
design patterns is an exciting new fad; one that produced some of
last year's most insightful computer books, a few of which are listed
at the end of this article.

In the first few articles of this series, I'll present examples of terrific object-oriented design patterns that you can probably use
immediately. In the months ahead, I'll occasionally pause on the wider issues of pattern usage and pattern coordination.

What is a design pattern?
A pattern is a recurring solution to a particular problem. A design pattern is a general, but multifaceted, abstraction of the
solution and its applicability. Patterns are found wherever several classes and their instances collaborate as a system. You
don't need to "know" about patterns to unconsciously create and use them. Some design patterns, when applied under
appropriate conditions to solve the correct sort of problem, have known tendencies to be stable, scaleable, and coherent.
These patterns are just now being identified, analyzed, and cataloged.

A design pattern defines the parts, collaborations, and responsibilities of classes and instances used in a software subsystem.
Thus they abstract the subsystem above the level of classes, instances, and code. Patterns are all about architectures, their
component structures, and all their nuances. Abstracting known good solutions into patterns, and cataloging of pattern-based
design experience, looks promising as a source of design guidance. If anything, it gives good insight into the balance of forces
surrounding a particular problem.

Pattern language gives us a common shared vocabulary about patterns and their implementations. Pattern language seeks to
capture and communicate object-oriented design experience. A shared understanding of pattern language can vastly clarify
communication among developers in spite of the complexity of the underlying software. So patterns serve as a guide to the
sensible design of software building blocks, and they help us better communicate and cope. For more on patterns and specific
design patterns, refer to the references at the end of this article.

The BRIDGE pattern
BRIDGE is a scale-independent structural pattern used in many object-oriented situations. The BRIDGE pattern often serves
as a player in other design patterns because it defines an abstract coupling, meaning how objects interact.

Intent
The BRIDGE decouples an object's public interface ("form") from its implementation (its "function"), using two (or more)
objects where otherwise one might less flexibly suffice. Separating an object's programming interface from its implementation
means that both form and function objects can be subclassed, extended, or substituted independently. The need for this sort
of inherent flexibility is usually why a BRIDGE pattern occurs.

Also known as
HANDLE AND BODY or ENVELOPE AND LETTER are good descriptive names -- the dual-object nature of BRIDGE patterns
is well conveyed, as is the tight coupling usually found between the programming interface and implementation objects.

Motivation
A BRIDGE structure is an encapsulated system of players: one (or more) "programming interface" object and one (or more)
implementation object. See Figure 1 for an OMT notation class diagram. The relationship between them, as controlled by the
oIMP object reference, is the bridge. This BRIDGE pattern in Codebook 3.0 hangs on an aptly named member property. Any
of the cDataBehavior subclasses may be substituted.

Figure 1. OMT notation class diagram.

Seite 1 von 6Print Article

06.04.06http://foxtalknewsletter.com/ME2/Audiences/Segments/Publications/Print.asp?Module=...

Why use a BRIDGE? A class may have several possible implementations. This seems true of reusable classes, especially
those that service a variety of clients. The usual way to manage this is by extending the class hierarchy using inheritance.
After all, inheritance is usually the first mechanism most folks use to reuse their classes. And why not? In the early going,
inheritance is always a big success.

At the limit, however, inheritance leads to sclerosis -- it doesn't scale particularly well. Simple, single-object inheritance binds
interface and implementation -- you have only one package to transform into a subclass. This means that interface and
implementation aspects can't be independently varied without extending the class hierarchy. But class hierarchies naturally
loses their inherent adaptability with size and as the number and variety of clients increases. Why? It's due to side effects,
partly. The probability of side-effects in clients increases with the number and variety of those clients, and correspondingly
with the current state of the hierarchy. In a giant class hierarchy, making a small change near the top can be very expensive.
Occasionally this will limit what can reasonably be done at a given level in a class hierarchy.

The BRIDGE pattern mitigates class sclerosis by decoupling interfaces from implementations, and putting the abstraction and
implementation in separate class hierarchies. This allows the interface and implementation classes to vary independently, and
the inherent substitutability of subclasses makes the structure intrinsically adaptable (and hence reusable). The bridge in all
this is the relationship between the interface and the implementation objects that together form a self-supporting system.

The workings among the players in a BRIDGE should be direct and simple: the interface object forwards client requests to the
appropriate implementation object. Tight coupling within the BRIDGE structure is both common and desirable. The tight
coupling is much easier to manage when all the implementation objects come from the same class, as illustrated in the
Codebook example in Figure 2.

Figure 2. Implementation objects that come from the same class.

Applicability
The BRIDGE pattern is independent of scale and found nearly everywhere within object systems, including within other
common software design patterns. Look for BRIDGE when you anticipate future extensions to an object's form or function. In
this case, separating form from function can lead to new adaptations without affecting existing client code:

n You want to avoid extending a class hierarchy for the sake of new implementations. The BRIDGE pattern is an
effective alternative to an undesirable explosion in the number of subclasses in a given class hierarchy.

n You want to choose a specific behavior at run-time. Using a BRIDGE can drastically lessen the need for design-time
divine insight about future applications of this class.

n You need to improve an existing design. The separation of form and function duties is normally invisible to clients, so
a BRIDGE object can usually be successfully substituted into existing but inflexible code.

n You want to defer object overhead expenses until they are needed instead of paying in full up-front. A smart BRIDGE
can provide this "pay-as-you-go" behavior by instantiating its implementation objects only when (and if) required.

n Hiding implementation details is desirable in spite of the need to fully disclose a programming interface. You can give
other developers what they need to integrate your objects without divulging proprietary implementation code.

n Reusing implementation code is made difficult by the need to repeatedly adapt it's programming interface. You can
more easily serve diverse clients if the extensibility of an object's programming interface is separate from it's
functionality.

n A backpointer from the implementation to the interface object is occasionally desirable. This implies, however, that this
implementation object must possess an interface of its own, which is easier to manage if the implementation object is
itself a bridge. Bridges, you see, are almost infinitely scaleable and applicable.

Visual FoxPro samples
Now we'll look at three simple ways BRIDGE patterns can be built in FoxPro: First with member properties. Second we'll do
more flexible implementations using member arrays, and third using object composition within containers.

Member Property BRIDGE
One way to build a BRIDGE is diagrammed in Figure 4. Here an interface member property contains a reference to an
implementation object.

Figure 4. BRIDGE diagram.

Seite 2 von 6Print Article

06.04.06http://foxtalknewsletter.com/ME2/Audiences/Segments/Publications/Print.asp?Module=...

In general terms, here's how such systems are constructed in VFP. What follows is a simple illustrative class that provides
WAIT WINDOW services.

Listing 1. A simple BRIDGE using a member property to reference the implementation object.

Another example of this sort of BRIDGE is found in Codebook where the cBizobj (business object) class uses an object of the
cDataBehavior class to implement the usual table navigation and record-processing functions. The diagram in Figure 2
illustrates this.

Member Array BRIDGE
Starting from the Member Property BRIDGE, it's a short stretch to provide multiple simultaneous implementations by using
multiple member properties or, as described below, member arrays. The diagram in Figure 3 shows the use of multiple arrays
that map to multiple implementations.

Figure 3. Diagram showing use of multiple arrays.

XX= CREATEOBJECT("WaitMsgServer")
XX.Execute("This, for now, is in a WAIT WINDOW")
DEFINE CLASS WaitMsgServer AS MsgInterface
 FUNCTION Init(txPassed)
 *-- Load an interface object
 THIS.aImp= CREATEOBJECT("WaitMsg")
 ENDFUNC
 FUNCTION Execute(txPassed)
 *-- Pass the request along
 THIS.aImp.Execute(txPassed)
 ENDFUNC
ENDDEFINE
DEFINE CLASS WaitMsg AS MsgImplementation
 FUNCTION Show(txPara1)
 WAIT WINDOW THIS.cMessage
 ENDFUNC
ENDDEFINE
DEFINE CLASS MsgInterface AS CUSTOM
 *-- Abstract message interface class
 aImp= .NULL.
 FUNCTION Execute(txPassed)
 *-- Abstract
 ENDFUNC
ENDDEFINE
DEFINE Class MsgImplementation AS Custom
 *-- Abstract message implementation class
 cMessage= ''
 FUNCTION Execute(tcPassed)
 THIS.cMessage=tcPassed
 THIS.Show()
 ENDFUNC
 FUNCTION Show
 *-- Abstract
 ENDFUNC
ENDDEFINE

Seite 3 von 6Print Article

06.04.06http://foxtalknewsletter.com/ME2/Audiences/Segments/Publications/Print.asp?Module=...

Listing 1 is modified in Listing 2 to support four different types of dialog boxes to extend the legacy WAIT WINDOW
capability:

Listing 2. Many implementations can be connected to an interface array member property.

Containership BRIDGE
Containership implementations are similar to array member implementations. In Visual FoxPro, containership is superbly
implemented, so containership BRIDGEs are easy to create and manage. Useful are the Controls() array, the PARENT
keyword, SetAll(), and AMEMBERS(,,2), which make it possible to manage containership nesting.

The containership relationship is illustrated in Figure 4, and Listing 3 is an illustrative code example.

DEFINE CLASS WaitMsgServer AS MsgInterface
 FUNCTION Init
 *-- Load interface objects
 THIS.aImp[1]= CREATEOBJECT("WaitMsg")
 THIS.aImp[2]= CREATEOBJECT("RegularMsg")
 THIS.aImp[3]= CREATEOBJECT("InfoMsg")
 THIS.aImp[4]= CREATEOBJECT("WarningMsg")
 THIS.aImp[5]= CREATEOBJECT("ErrorMsg")
 *-- Supporting the legacy singular WaitMsg capability
 THIS.oImp= aImp[1]
 ENDFUNC
 FUNCTION Execute(txPassed, tnMessageType)
 THIS.aImp[tnMessageType].Execute(txPassed)
 ENDFUNC
ENDDEFINE
DEFINE CLASS WaitMsg AS MsgImplementation
 FUNCTION SHOW(txPara1)
 WAIT WINDOW THIS.cMessage
 ENDFUNC
ENDDEFINE
DEFINE CLASS RegularMsg AS MsgBoxImplementation
 cTitle= "My Application"
ENDDEFINE
DEFINE CLASS InfoMsg AS RegularMsg
 nIcon= 64
ENDDEFINE
DEFINE CLASS WarningMsg AS InfoMsg
 nIcon= 48
ENDDEFINE
DEFINE CLASS ErrorMsg AS WarningMsg
 nIcon= 16
 nButtons= 5
ENDDEFINE
DEFINE CLASS MsgInterface AS CUSTOM
 *-- Abstract message interface class
 DIMENSION aImp[4]
 aImp[1]= .NULL.
 aImp[2]= .NULL.
 aImp[3]= .NULL.
 aImp[4]= .NULL.
 *-- Virtual
 FUNCTION Execute(txPassed)
ENDDEFINE
DEFINE CLASS MsgBoxImplementation AS MsgImplementation
 nIcon= 0
 nButtons= 0
 FUNCTION Show
 =MessageBox(THIS.ctext, THIS.nIcon+THIS.nButtons, THIS.cTitle)
 ENDFUNC
ENDDEFINE
DEFINE Class MsgImplementation AS Custom
 *-- Abstract message implementation class
 cMessage= ''
 FUNCTION Execute(tcPassed)
 THIS.cMessage=tcPassed
 THIS.show()
 ENDFUNC
 *-- Virtual
 FUNCTION Show
 ENDFUNC
ENDDEFINE

Seite 4 von 6Print Article

06.04.06http://foxtalknewsletter.com/ME2/Audiences/Segments/Publications/Print.asp?Module=...

Listing 3. Multiple implementations instantiated in an interface container.

DEFINE CLASS MsgServer AS MsgInterface
 FUNCTION Init
 *-- Load an interface object with implementations.
 *-- Exercise for the reader: Imagine delaying
 *-- the AddObject calls until actually needed.
 THIS.AddObject("msgWaitWindow","WaitMsg")
 THIS.AddObject("msgRegular", "RegularMsg")
 THIS.AddObject("msgInfo", "InfoMsg")
 THIS.AddObject("msgWarning", "WarningMsg")
 THIS.AddObject("msgError", "ErrorMsg")
 ENDFUNC
 FUNCTION Execute(tnPassed, tcMessage)
 *? I don't recommend doing it quite like this --
 *? This simple example assumes you know the number
 *? of the implementation object. In a perfect but
 *? (less concise) example, .Execute(x,y) could accept
 *? an x of type "C", as in
 *? .Execute("Warning",)
 *?
 THIS.Controls(tnPassed).Execute(tcMessage)
ENDFUNC
ENDDEFINE
DEFINE CLASS WaitMsg AS MsgImplementation
 FUNCTION SHOW(txPara1)
 WAIT WINDOW THIS.cMessage
 ENDFUNC
ENDDEFINE
DEFINE CLASS RegularMsg AS MsgBoxImplementation
 cTitle= "My Application"
ENDDEFINE
DEFINE CLASS InfoMsg AS RegularMsg
 nIcon= 64
ENDDEFINE
DEFINE CLASS WarningMsg AS InfoMsg
 nIcon= 48
ENDDEFINE
DEFINE CLASS ErrorMsg AS WarningMsg
 nIcon= 16
 nButtons= 5
ENDDEFINE
DEFINE CLASS MsgInterface AS Container
 *-- Abstract message interface class
 *? Hardcoded dimension
 DIMENSION aImp[4]
 aImp[1]= .NULL.
 aImp[2]= .NULL.
 aImp[3]= .NULL.
 aImp[4]= .NULL.

 FUNCTION Execute(txPassed)
 *-- Abstract method
 RETURN 0
ENDDEFINE
DEFINE Class MsgImplementation AS Custom
 *-- Abstract message implementation class
 cMessage= ''
 FUNCTION Execute(tcPassed)
 THIS.cMessage=tcPassed
 THIS.Show()
 FUNCTION Show
 *-- Abstract method
 RETURN 0
ENDDEFINE
DEFINE CLASS MsgBoxImplementation AS MsgImplementation
 nIcon= 0
 nButtons= 0
 FUNCTION Show
 =MessageBox(THIS.ctext, THIS.nIcon+THIS.nButtons, THIS.cTitle)
 ENDFUNC
ENDDEFINE

Seite 5 von 6Print Article

06.04.06http://foxtalknewsletter.com/ME2/Audiences/Segments/Publications/Print.asp?Module=...

What to expect from BRIDGE patterns
On balance, classes built as BRIDGEs are easier to extend and adapt since their interfaces and implementations can be
subclassed independently. Moreover, the BRIDGE pattern is easy to grasp and is easily communicated among developers
and designers.

Even though programming interfaces and implementations are separate, a high degree of cohesion (coupling) between
participants is to be expected unless steps are taken to abstract their relationship. The BRIDGE pattern scales nicely, and it's
not unusual to find a BRIDGE containing other BRIDGEs. This is a good rule of thumb: when creating a new class, always
consider making it a BRIDGE first.

Next month we'll talk further about abstracting the relationship between objects when we discuss OBSERVER and
MEDIATOR patterns.

Sidebar: References
Black, S. (1995) Pattern Implementation in VFP, European Visual FoxPro Developers Conference '95 session notes, E-PATT,
Frankfurt, Germany. And also: GLGDW '95 session notes, #30, Milwaukee, WI.

Coplien, J, and Schmidt, D (1995) Pattern Languages of Program Design. Reading, MA. Addison Wesley. ISBN 0-201-60734-
4.

Gamma, E., Helm, R., Johnson, R, and Vlissides, J. (1994) Design Patterns, Elements of Object Oriented Software. Reading,
MA. Addison Wesley. ISBN 0-201-63361-2

Pree, W (1995) Design Patterns for Object Oriented Development. Reading, MA. Addison Wesley and ACM press. ISBN 0-
201-42294-8.

Seite 6 von 6Print Article

06.04.06http://foxtalknewsletter.com/ME2/Audiences/Segments/Publications/Print.asp?Module=...

